Case Study-Performance Lawn Care – Episode 5

 

In reviewing the PLE data, Elizabeth Burke noticed that defects received from suppliers have decreased (worksheet Defects After Delivery). Upon investigation, she learned that in 2010, PLE experienced some quality problems due to an increasing number of defects in materials received from suppliers. The company instituted an initiative in August 2011 to work with suppliers to reduce these defects, to more closely coordinate deliveries, and to improve material quality through reengineering supplier production policies. Elizabeth noted that the program appeared to reverse an increasing trend in defects; she would like to predict what might have happened had the supplier initiative not been implemented and how the number of defects might further be reduced in the near future.

In meeting with PLE’s human resources director, Elizabeth also discovered a concern about the high rate of turnover in its field service staff. Senior managers have suggested that the department look closer at its recruiting policies, particularly to try to identify the characteristics of individuals that lead to greater retention. However, in a recent staff meeting, HR managers could not agree on these characteristics. Some argued that years of education and grade point averages were good predictors. Others argued that hiring more mature applicants would lead to greater retention. To study these factors, the staff agreed to conduct a statistical study to determine the effect that years of education, college grade point average, and age when hired have on retention. A sample of 40 field service engineers hired 10 years ago was selected to determine the influence of these variables on how long each individual stayed with the company. Data are compiled in the Employee Retention worksheet.

Finally, as part of its efforts to remain competitive, PLE tries to keep up with the latest in production technology. This is especially important in the highly competitive lawn mower line, in which competitors can gain a real advantage if they develop more cost-effective means of production. Therefore, the lawn mower division spends a great deal of effort in testing new technology. When new production technology is introduced, firms often experience learning, resulting in a gradual decrease in the time required to produce successive units. Generally, the rate of improvement declines until the production time levels off. One example is the production of a new design for lawn mower engines. To determine the time required to produce these engines, PLE produced 50 units on its production line; test results are given on the worksheet Engines in the database. Because PLE is continually developing new technology, understanding the rate of learning can be useful in estimating future production costs without having to run extensive prototype trials, and Elizabeth would like a better handle on this. Use techniques of regression analysis to assist her in evaluating the data in these three worksheets and reaching useful conclusions. Summarize your work in a formal report with all appropriate results and analyses and upload your Word document AND your Excel worksheet file 

Dealer Satisfaction

Dealer Satisfaction
tc={BC340A24-8BBA-491F-B401-F2D940BCB741}: [Threaded comment] Your version of Excel allows you to read this threaded comment; however, any edits to it will get removed if the file is opened in a newer version of Excel. Learn more: https://go.microsoft.com/fwlink/?linkid=870924 Comment: This chart is showing Dealer Satisfaction between North America, South America, Europe, Pacific Rim and China. The data that was selected was rated on a a survery scale from 0-5 and between the the years of 2010-2014, except for China who started later in 2012. North America was leading in sample size and "in 5s" dealer satisfacion for "excelltence". Although North America recieved the highest total numbers in dealer satisfactions for excellent rankings, in 2014, South America recieved 60 surverys and North America recieved 56 within the level 5 category.
Survey Scale: 0 1 2 3 4 5 Sample
North America Size
2010 1 0 2 14 22 11 50
2011 0 0 2 14 20 14 50
2012 1 1 1 8 34 15 60
2013 1 2 6 12 34 45 100
2014 2 3 5 15 44 56 125
South America
2010 0 0 0 2 6 2 10
2011 0 0 0 2 6 2 10
2012 0 0 1 4 11 14 30
2013 0 1 1 3 12 33 50
2014 1 1 2 4 22 60 90
Europe
2010 0 0 1 3 7 4 15
2011 0 0 1 2 8 4 15
2012 0 0 1 2 15 7 25
2013 0 0 1 2 21 6 30
2014 0 0 1 4 17 8 30
Pacific Rim
2010 0 0 1 2 2 0 5
2011 0 0 1 1 3 0 5
2012 0 0 1 1 3 1 6
2013 0 0 0 2 5 3 10
2014 0 0 1 2 7 2 12
China
2012 0 0 0 1 0 0 1
2013 0 0 1 4 2 0 7
2014 0 0 1 5 8 2 16

Dealer Satisfaction by Region and Year

0 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 1 0 1 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 0 0 1 2 3 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 2 2 1 6 5 0 0 1 1 2 1 1 1 1 1 1 1 1 0 1 0 1 1 3 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 14 14 8 12 15 2 2 4 3 4 3 2 2 2 4 2 1 1 2 2 1 4 5 4 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 22 20 34 34 44 6 6 11 12 22 7 8 15 21 17 2 3 3 5 7 0 2 8 5 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 11 14 15 45 56 2 2 14 33 60 4 4 7 6 8 0 0 1 3 2 0 0 2

Having Trouble Meeting Your Deadline?

Get your assignment on Case Study-Performance Lawn Care – Episode 5 completed on time. avoid delay and – ORDER NOW

This chart is showing Dealer Satisfaction between North America, South America, Europe, Pacific Rim and China. The data that was selected was rated on a a survery scale from 0-5 and between the the years of 2010-2014, except for China who started later in 2012. North America was leading in sample size and "in 5s" dealer satisfacion for "excelltence". Although North America recieved the highest total numbers in dealer satisfactions for excellent rankings, in 2014, South America recieved 60 surverys and North America recieved 56 within the level 5 category.

End-User Satisfaction

End-User Satisfaction
tc={4E1782D3-7E9F-4E7B-83FB-A93AAF2BD2E6}: [Threaded comment] Your version of Excel allows you to read this threaded comment; however, any edits to it will get removed if the file is opened in a newer version of Excel. Learn more: https://go.microsoft.com/fwlink/?linkid=870924 Comment: This chart is showing End-User Satisfaction between North America, South America, Europe, Pacific Rim and China. The data that was selected was rated on a a survery scale from 0-5 and between the the years of 2010-2014, except for China who started later in 2012. North America, South America, Europe, and the Pacific Rim all have the same sample size of 100 for each year between 2010 through 2014. China has a smaller sample size of 50 between the years of 2012 through 2014. You cansee that the ratings of 5's, 4's, and 3's are the highest ratings. North America's rating of 4 decreases every year starting with 2010 while the 5 ratings increase through the years. The Pacfic Rim's 4 ratings are highest rated and is basically constant throughout the years while the 5 ratings are lower then 4 ratings the 5's are constant throughout the years.
Sample
North America 0 1 2 3 4 5 Size
2010 1 3 6 15 37 38 100
2011 1 2 4 18 35 40 100
2012 1 2 5 17 34 41 100
2013 0 2 4 15 33 46 100
2014 0 2 3 15 31 49 100
South America
2010 1 2 5 18 36 38 100
2011 1 3 6 17 36 37 100
2012 0 2 6 19 37 36 100
2013 0 2 5 20 37 36 100
2014 0 2 5 19 37 37 100
Europe
2010 1 2 4 21 36 36 100
2011 1 2 5 21 34 37 100
2012 1 1 4 26 37 31 100
2013 1 1 3 17 41 37 100
2014 0 1 2 19 45 33 100
Pacific Rim
2010 2 3 5 15 41 34 100
2011 1 2 7 15 41 34 100
2012 1 2 5 16 40 36 100
2013 0 2 4 17 40 37 100
2014 0 1 3 19 42 35 100
China
2012 0 3 3 6 28 10 50
2013 1 2 2 4 30 11 50
2014 0 1 1 3 31 14 50

End-User Satisfaction by Region and Year

0 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 2 1 1 0 0 0 1 0 1 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 3 2 2 2 2 2 3 2 2 2 2 2 1 1 1 3 2 2 2 1 3 2 1 2 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 6 4 5 4 3 5 6 6 5 5 4 5 4 3 2 5 7 5 4 3 3 2 1 3 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 15 18 17 15 15 18 17 19 20 19 21 21 26 17 19 15 15 16 17 19 6 4 3 4 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 37 35 34 33 31 36 36 37 37 37 36 34 37 41 45 41 41 40 40 42 28 30 31 5 2010 2011 2012 2013 2014 South America 2010 2011 2012 2013 2014 Europe 2010 2011 2012 2013 2014 Pacific Rim 2010 2011 2012 2013 2014 China 2012 2013 2014 38 40 41 46 49 38 37 36 36 37 36 37 31 37 33 34 34 36 37 35 10 11 14

This chart is showing End-User Satisfaction between North America, South America, Europe, Pacific Rim and China. The data that was selected was rated on a a survery scale from 0-5 and between the the years of 2010-2014, except for China who started later in 2012. North America, South America, Europe, and the Pacific Rim all have the same sample size of 100 for each year between 2010 through 2014. China has a smaller sample size of 50 between the years of 2012 through 2014. You can see that the ratings of 5's, 4's, and 3's are the highest ratings. North America's rating of 4 decreases every year starting with 2010 while the 5 ratings increase through the years. The Pacfic Rim's 4 ratings are highest rated and is basically constant throughout the years while the 5 ratings are lower then 4 ratings the 5's are constant throughout the years.

Complaints

Complaints
tc={3A6BEBAD-C122-4573-AF72-C42391975593}: [Threaded comment] Your version of Excel allows you to read this threaded comment; however, any edits to it will get removed if the file is opened in a newer version of Excel. Learn more: https://go.microsoft.com/fwlink/?linkid=870924 Comment: This chart is showing PLE's Complaoints from registered by all customers each month within PLE's 5 regions. From this data we can conclude that there is more use of the equipment in the summer months because of the higher number of complaints recieved. Based off the data shown form the region of China, their compaints are few and are steady throughout the months. This could be because they do not use this type of equipment in comparison to the other regions.
Month World NA SA Eur Pac China
Jan-10 169 102 12 52 3
Feb-10 187 115 13 55 4
Mar-10 210 128 15 61 6
Apr-10 226 136 16 67 7
May-10 232 137 17 73 5
Jun-10 261 151 19 82 9
Jul-10 245 140 18 80 7
Aug-10 223 128 16 76 3
Sep-10 195 103 15 73 4
Oct-10 174 96 14 62 2
Nov-10 154 84 11 59 0
Dec-10 163 99 9 54 1
Jan-11 195 123 10 59 3
Feb-11 221 141 13 62 5
Mar-11 240 152 16 66 6
Apr-11 264 163 20 70 11
May-11 283 178 22 75 8
Jun-11 296 170 28 86 12
Jul-11 269 153 25 81 10
Aug-11 256 146 23 79 8
Sep-11 231 131 20 73 7
Oct-11 214 125 16 68 5
Nov-11 201 118 13 66 4
Dec-11 171 96 11 61 3
Jan-12 200 112 15 66 4 3
Feb-12 216 117 18 71 6 4
Mar-12 234 126 20 76 9 3
Apr-12 253 138 23 79 11 2
May-12 282 152 26 85 14 5
Jun-12 305 163 30 91 15 6
Jul-12 296 156 28 89 18 5
Aug-12 279 148 26 86 15 4
Sep-12 266 143 24 82 13 4
Oct-12 243 131 21 76 12 3
Nov-12 232 128 18 73 10 3
Dec-12 203 107 15 70 7 4
Jan-13 216 110 19 74 8 5
Feb-13 239 123 23 79 10 4
Mar-13 266 138 26 83 13 6
Apr-13 284 150 30 88 11 5
May-13 315 169 33 91 15 7
Jun-13 340 181 37 95 19 8
Jul-13 319 169 34 92 17 7
Aug-13 304 160 32 90 15 7
Sep-13 277 141 29 87 14 6
Oct-13 250 123 26 83 12 6
Nov-13 228 112 24 77 10 5
Dec-13 213 105 23 74 7 4
Jan-14 240 121 26 80 8 5
Feb-14 251 126 28 82 10 5
Mar-14 281 148 31 85 12 5
Apr-14 298 155 35 89 13 6
May-14 322 168 39 95 12 8
Jun-14 350 183 43 98 15 11
Jul-14 330 170 41 95 14 10
Aug-14 311 158 38 93 13 9
Sep-14 289 149 33 89 11 7
Oct-14 265 136 30 85 8 6
Nov-14 239 121 26 80 7 5
Dec-14 219 108 23 76 7 5

Complaints by Month and Region

World 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 169 187 210 226 232 261 245 223 195 174 154 163 195 221 240 264 283 296 269 256 231 214 201 171 200 216 234 253 282 305 296 279 266 243 232 203 216 239 266 284 315 340 319 304 277 250 228 213 240 251 281 298 322 350 330 311 289 265 239 219 NA 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 102 115 128 136 137 151 140 128 103 96 84 99 123 141 152 163 178 170 153 146 131 125 118 96 112 117 126 138 152 163 156 148 143 131 128 107 110 123 138 150 169 181 169 160 141 123 112 105 121 126 148 155 168 183 170 158 149 136 121 108 SA 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 12 13 15 16 17 19 18 16 15 14 11 9 10 13 16 20 22 28 25 23 20 16 13 11 15 18 20 23 26 30 28 26 24 21 18 15 19 23 26 30 33 37 34 32 29 26 24 23 26 28 31 35 39 43 41 38 33 30 26 23 Eur 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 4185 2 41883 41913 41944 41974 52 55 61 67 73 82 80 76 73 62 59 54 59 62 66 70 75 86 81 79 73 68 66 61 66 71 76 79 85 91 89 86 82 76 73 70 74 79 83 88 91 95 92 90 87 83 77 74 80 82 85 89 95 98 95 93 89 85 80 76 Pac 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 3 4 6 7 5 9 7 3 4 2 0 1 3 5 6 11 8 12 10 8 7 5 4 3 4 6 9 11 14 15 18 15 13 12 10 7 8 10 13 11 15 19 17 15 14 12 10 7 8 10 12 13 12 15 14 13 11 8 7 7 China 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 3 4 3 2 5 6 5 4 4 3 3 4 5 4 6 5 7 8 7 7 6 6 5 4 5 5 5 6 8 11 10 9 7 6 5 5

This chart is showing PLE's Complaints from registered customers each month within PLE's 5 regions. From this data we can conclude that there is more use of the equipment in the summer months because of the higher number of complaints recieved. China has the fewest number of compaints, this is due to the less customer usage. Based off the data, the Pacific Rim and South America do not have as many complaints as North America does due to less people using or purchasing PLE's equipment. .

Mower Unit Sales

Mower Unit Sales
tc={6A814A1A-8E51-48A1-A543-AEC7E2B5497F}: [Threaded comment] Your version of Excel allows you to read this threaded comment; however, any edits to it will get removed if the file is opened in a newer version of Excel. Learn more: https://go.microsoft.com/fwlink/?linkid=870924 Comment: The chart identifies the unit sales PLE's mower equipment. We can see that the highest peak for mower sales is in the summer months and then a decline in sales starting in early fall months. BAsed off this chart, North America is the region with the highest unit sales for PLE's mowers.
Month NA SA Europe Pacific China World
Jan-10 6000 200 720 100 0 7020
Feb-10 7950 220 990 120 0 9280
Mar-10 8100 250 1320 110 0 9780
Apr-10 9050 280 1650 120 0 11100
May-10 9900 310 1590 130 0 11930
Jun-10 10200 300 1620 120 0 12240
Jul-10 8730 280 1590 140 0 10740
Aug-10 8140 250 1560 130 0 10080
Sep-10 6480 230 1590 130 0 8430
Oct-10 5990 220 1320 120 0 7650
Nov-10 5320 210 990 130 0 6650
Dec-10 4640 180 660 140 0 5620
Jan-11 5980 210 690 140 0 7020
Feb-11 7620 240 1020 150 0 9030
Mar-11 8370 250 1290 140 0 10050
Apr-11 8830 290 1620 150 0 10890
May-11 9310 330 1650 130 0 11420
Jun-11 10230 310 1590 140 0 12270
Jul-11 8720 290 1560 150 0 10720
Aug-11 7710 270 1530 140 0 9650
Sep-11 6320 250 1590 150 0 8310
Oct-11 5840 250 1260 160 0 7510
Nov-11 4960 240 900 150 0 6250
Dec-11 4350 210 660 150 0 5370
Jan-12 6020 220 570 160 0 6970
Feb-12 7920 250 840 150 0 9160
Mar-12 8430 270 1110 160 0 9970
Apr-12 9040 310 1500 170 0 11020
May-12 9820 360 1440 160 0 11780
Jun-12 10370 330 1410 170 0 12280
Jul-12 9050 310 1440 160 0 10960
Aug-12 7620 300 1410 170 0 9500
Sep-12 6420 280 1350 180 0 8230
Oct-12 5890 270 1080 180 0 7420
Nov-12 5340 260 840 190 0 6630
Dec-12 4430 230 510 180 0 5350
Jan-13 6100 250 480 200 0 7030
Feb-13 8010 270 750 190 0 9220
Mar-13 8430 280 1140 200 0 10050
Apr-13 9110 320 1410 210 0 11050
May-13 9730 380 1340 190 0 11640
Jun-13 10120 360 1360 200 0 12040
Jul-13 9080 320 1410 200 0 11010
Aug-13 7820 310 1490 210 0 9830
Sep-13 6540 300 1310 220 0 8370
Oct-13 6010 290 980 210 0 7490
Nov-13 5270 270 770 220 0 6530
Dec-13 5380 260 430 230 0 6300
Jan-14 6210 270 400 200 0 7080
Feb-14 8030 280 750 190 0 9250
Mar-14 8540 300 970 210 0 10020
Apr-14 9120 340 1310 220 5 10995
May-14 9570 390 1260 200 16 11436
Jun-14 10230 380 1240 210 22 12082
Jul-14 9580 350 1300 230 26 11486
Aug-14 7680 340 1250 220 14 9504
Sep-14 6870 320 1210 220 15 8635
Oct-14 5930 310 970 230 11 7451
Nov-14 5260 300 650 240 3 6453
Dec-14 4830 290 300 230 1 5651

Mower Unit Sales by Month and Region

NA 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 6000 7950 8100 9050 9900 10200 8730 8140 6480 5990 5320 4640 5980 7620 8370 8830 9310 10230 8720 7710 6320 5840 4960 4350 6020 7920 8430 9040 9820 10370 9050 7620 6420 5890 5340 4430 6100 8010 8430 9110 9730 10120 9080 7820 6540 6010 5270 5380 6210 8030 8540 9120 9570 10230 9580 7680 6870 5930 5260 4830 SA 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 200 220 250 280 310 300 280 250 230 220 210 180 210 240 250 290 330 310 290 270 250 250 240 210 220 250 270 310 360 330 310 300 280 270 260 230 250 270 280 320 380 360 320 310 300 290 270 260 270 280 300 340 390 380 350 34 0 320 310 300 290 Europe 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 720 990 1320 1650 1590 1620 1590 1560 1590 1320 990 660 690 1020 1290 1620 1650 1590 1560 1530 1590 1260 900 660 570 840 1110 1500 1440 1410 1440 1410 1350 1080 840 510 480 750 1140 1410 1340 1360 1410 1490 1310 980 770 430 400 750 970 1310 1260 1240 1300 1250 1210 970 650 300 Pacific 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 100 120 110 120 130 120 140 130 130 120 130 140 140 150 140 150 130 140 150 140 150 160 150 150 160 150 160 170 160 170 160 170 180 180 190 180 200 190 200 210 190 200 200 210 220 210 220 230 200 190 210 220 200 210 230 220 220 230 240 230 China 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 16 22 26 14 15 11 3 1 World 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 7020 9280 9780 11100 11930 12240 10740 10080 8430 7650 6650 5620 7020 9030 10050 10890 11420 12270 10720 9650 8310 7510 6250 5370 6970 9160 9970 11020 11780 12280 10960 9500 8230 7420 6630 5350 7030 9220 10050 11050 11640 12040 11010 9830 8370 7490 6530 6300 7080 9250 10020 10995 11436 12082 11486 9504 8635 7451 6453 5651

The chart identifies the unit sales on PLE's mower equipment. We can see that the highest peak for mower sales is in the summer months and then a decline in sales starting in early fall months. Looking at the chart, North America is the region with the highest unit sales for PLE's mowers.

Tractor Unit Sales

Tractor Unit Sales
tc={65A5E7B3-7884-4D7D-9EEA-FA365565A5C9}: [Threaded comment] Your version of Excel allows you to read this threaded comment; however, any edits to it will get removed if the file is opened in a newer version of Excel. Learn more: https://go.microsoft.com/fwlink/?linkid=870924 Comment: The chart identifies the unit sales PLE's tractor equipment. We can see that throughout the years with the World orange line shown in the graph increases total sales between the years of 2010 to 2014. The line is basically increase in a positive direction on this graph. And the increase in tractor sales increase in each region throughout the years as well. Overall there is a positive correlations between time and tractor unit sales over all of the country regions. Month NA SA Eur Pac China World
Jan-10 570 250 560 212 0 1592
Feb-10 611 270 600 230 0 1711
Mar-10 630 260 680 240 0 1810
Apr-10 684 270 650 263 0 1867
May-10 650 280 580 269 0 1779
Jun-10 600 270 590 280 0 1740
Jul-10 512 264 760 290 0 1826
Aug-10 500 280 645 270 0 1695
Sep-10 478 290 650 263 0 1681
Oct-10 455 280 670 258 0 1663
Nov-10 407 290 888 240 0 1825
Dec-10 360 280 850 230 0 1720
Jan-11 571 320 620 250 0 1761
Feb-11 650 350 760 275 0 2035
Mar-11 740 390 742 270 0 2142
Apr-11 840 440 780 280 0 2340
May-11 830 470 690 290 0 2280
Jun-11 760 490 721 300 0 2271
Jul-11 681 481 680 312 0 2154
Aug-11 670 460 711 305 0 2146
Sep-11 640 460 695 290 0 2085
Oct-11 620 440 650 260 0 1970
Nov-11 570 436 680 250 0 1936
Dec-11 533 420 657 240 0 1850
Jan-12 620 510 610 250 10 2000
Feb-12 792 590 680 250 12 2324
Mar-12 890 610 730 260 20 2510
Apr-12 960 600 820 270 22 2672
May-12 1040 620 810 290 20 2780
Jun-12 1032 640 807 310 24 2813
Jul-12 1006 590 760 340 20 2716
Aug-12 910 600 720 320 31 2581
Sep-12 803 670 660 313 30 2476
Oct-12 730 630 630 290 37 2317
Nov-12 699 710 603 280 32 2324
Dec-12 647 570 570 260 33 2080
Jan-13 730 650 500 287 35 2202
Feb-13 930 680 590 290 50 2540
Mar-13 1160 724 620 300 63 2867
Apr-13 1510 730 730 310 68 3348
May-13 1650 760 740 330 70 3550
Jun-13 1490 800 720 340 82 3432
Jul-13 1460 840 670 350 80 3400
Aug-13 1390 830 610 341 90 3261
Sep-13 1360 820 599 330 100 3209
Oct-13 1340 810 560 320 102 3132
Nov-13 1240 827 550 300 110 3027
Dec-13 1103 750 520 290 114 2777
Jan-14 1250 780 480 200 111 2821
Feb-14 1550 805 523 210 121 3209
Mar-14 1820 830 560 220 123 3553
Apr-14 2010 890 570 230 120 3820
May-14 2230 930 590 253 130 4133
Jun-14 2490 980 600 270 136 4476
Jul-14 2440 1002 580 280 134 4436
Aug-14 2334 970 570 250 132 4256
Sep-14 2190 960 550 230 137 4067
Oct-14 2080 930 530 220 130 3890
Nov-14 2050 920 517 190 139 3816
Dec-14 2004 902 490 190 131 3717

Tractor Unit Sales by Month and Region

NA 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 570 611 630 684 650 600 512 500 478 455 407 360 571 650 740 840 830 760 681 670 640 620 570 533 620 792 890 960 1040 1032 1006 910 803 730 699 647 730 930 1160 1510 1650 1490 1460 1390 1360 1340 1240 1103 1250 1550 1820 2010 2230 2490 2440 2334 2190 2080 2050 2004 SA 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 250 270 260 270 280 270 264 280 290 280 290 280 320 350 390 440 470 490 481 460 460 440 436 420 510 590 610 600 620 640 590 600 670 630 710 570 650 680 724 730 760 800 840 830 820 810 827 750 780 805 830 890 930 980 1002 970 960 930 920 902 Eur 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 560 600 680 650 580 590 760 645 650 670 888 850 620 760 742 780 690 721 680 711 695 650 680 657 610 680 730 820 810 807 760 720 660 630 603 570 500 590 620 730 740 720 670 610 599 560 550 520 480 523 560 570 590 600 580 570 550 530 517 490 Pac 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 212 230 240 263 269 280 290 270 263 258 240 230 250 275 270 280 290 300 312 305 290 260 250 240 250 250 260 270 290 310 340 320 313 290 280 260 287 290 300 310 330 340 350 341 330 320 300 290 200 210 220 230 253 270 280 250 230 220 190 190 China 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 12 20 22 20 24 20 31 30 37 32 33 35 50 63 68 70 82 80 90 100 102 110 114 111 121 123 120 130 136 134 132 137 130 139 131 World 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 1592 1711 1810 1867 1779 1740 1826 1695 1681 1663 1825 1720 1761 2035 2142 2340 2280 2271 2154 2146 2085 1970 1936 1850 2000 2324 2510 2672 2780 2813 2716 2581 2476 2317 2324 2080 2202 2540 2867 3348 3550 3432 3400 3261 3209 3132 3027 2777 2821 3209 3553 3820 4133 4476 4436 4256 4067 3890 3816 3717

The chart identifies the unit sales for PLE's tractor equipment. We can see that throughout the years with the World orange line shown in the graph increases total sales between the years of 2010 to 2014. The line is basically increase in a positive direction on this graph. And the increase in tractor sales increase in each region throughout the years as well. Overall there is a positive correlations between time and tractor unit sales over all of the country regions.

Q2

Sum of Percent Year
2010 2011 2012 2013 2014 Anova: Single Factor
Month
Jan 98.43% 98.44% 98.67% 98.92% 99.21% SUMMARY
Feb 98.09% 98.63% 98.79% 98.82% 99.14% Groups Count Sum Average Variance
Mar 97.58% 98.38% 98.67% 98.91% 99.28% 2010 12 11.8191937544 98.49% 0.000012772
Apr 98.60% 98.73% 98.80% 98.97% 99.22% 2011 12 11.8337272701 98.61% 0.0000022009
May 98.73% 98.73% 98.84% 99.11% 99.22% 2012 12 11.8531797187 98.78% 0.000000506
Jun 98.64% 98.78% 98.81% 98.91% 99.08% 2013 12 11.8723090976 98.94% 0.0000034754
Jul 98.58% 98.71% 98.89% 98.99% 99.23% 2014 12 11.8882528563 99.07% 0.0000137813
Aug 98.67% 98.67% 98.77% 99.12% 99.23%
Sep 98.94% 98.58% 98.77% 98.93% 98.69%
Oct 98.76% 98.69% 98.67% 98.99% 99.23% ANOVA
Nov 98.50% 98.69% 98.83% 98.43% 99.29% Source of Variation SS df MS F P-value F crit
Dec 98.39% 98.33% 98.81% 99.12% 98.01% Between Groups 0.0002607821 4 0.0000651955 9.9579207275 0.0000039122 2.5396886349
Within Groups 0.0003600906 55 0.0000065471
Total 0.0006208727 59

On-Time Delivery

Month
tc={378CB2D4-4814-4165-B17B-6903BF4AE16B}: [Threaded comment] Your version of Excel allows you to read this threaded comment; however, any edits to it will get removed if the file is opened in a newer version of Excel. Learn more: https://go.microsoft.com/fwlink/?linkid=870924 Comment: We decided to use a clustered column chart to represent the On-Time deliveries for PLE's unit deliveries. The darker backgorund makes it easier to see the difference in the deliveries and the ones that were delivered on time to the customer. For example, for the month of January of 2010, PLE's had a total of 1086 deliveries but out of that number, 98.4% when delivered on-time. This chart makes is easy to compare those deliveries.
Number of deliveries Number On Time Percent
Jan-10 1086 1069 98.4%
Feb-10 1101 1080 98.1%
Mar-10 1116 1089 97.6%
Apr-10 1216 1199 98.6%
May-10 1183 1168 98.7%
Jun-10 1176 1160 98.6%
Jul-10 1198 1181 98.6%
Aug-10 1205 1189 98.7%
Sep-10 1223 1210 98.9%
Oct-10 1209 1194 98.8%
Nov-10 1198 1180 98.5%
Dec-10 1243 1223 98.4%
Jan-11 1220 1201 98.4%
Feb-11 1241 1224 98.6%
Mar-11 1237 1217 98.4%
Apr-11 1258 1242 98.7%
May-11 1262 1246 98.7%
Jun-11 1227 1212 98.8%
Jul-11 1243 1227 98.7%
Aug-11 1281 1264 98.7%
Sep-11 1272 1254 98.6%
Oct-11 1295 1278 98.7%
Nov-11 1298 1281 98.7%
Dec-11 1318 1296 98.3%
Jan-12 1281 1264 98.7%
Feb-12 1320 1304 98.8%
Mar-12 1352 1334 98.7%
Apr-12 1336 1320 98.8%
May-12 1291 1276 98.8%
Jun-12 1342 1326 98.8%
Jul-12 1352 1337 98.9%
Aug-12 1377 1360 98.8%
Sep-12 1385 1368 98.8%
Oct-12 1356 1338 98.7%
Nov-12 1362 1346 98.8%
Dec-12 1349 1333 98.8%
Jan-13 1386 1371 98.9%
Feb-13 1358 1342 98.8%
Mar-13 1371 1356 98.9% Q2
Apr-13 1362 1348 99.0%
May-13 1350 1338 99.1% Anova: Single Factor
Jun-13 1381 1366 98.9%
Jul-13 1392 1378 99.0% SUMMARY
Aug-13 1371 1359 99.1% Groups Count Sum Average Variance
Sep-13 1402 1387 98.9% 2010 12 11.8191937544 98.49% 0.000012772
Oct-13 1384 1370 99.0% 2011 12 11.8337272701 98.61% 0.0000022009
Nov-13 1399 1377 98.4% 2012 12 11.8531797187 98.78% 0.000000506
Dec-13 1369 1357 99.1% 2013 12 11.8723090976 98.94% 0.0000034754
Jan-14 1401 1390 99.2% 2014 12 11.8882528563 99.07% 0.0000137813
Feb-14 1388 1376 99.1%
Mar-14 1395 1385 99.3%
Apr-14 1412 1401 99.2% ANOVA
May-14 1403 1392 99.2% Source of Variation SS df MS F P-value F crit
Jun-14 1415 1402 99.1% Between Groups 0.0002607821 4 0.0000651955 9.9579207275 0.0000039122 2.5396886349
Jul-14 1426 1415 99.2% Within Groups 0.0003600906 55 0.0000065471
Aug-14 1431 1420 99.2%
Sep-14 1445 1426 98.7% Total 0.0006208727 59
Oct-14 1425 1414 99.2%
Nov-14 1413 1403 99.3%
Dec-14 1456 1427 98.0%

On Time Delivery by Month

Number of deliveries 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 1086 1101 1116 1216 1183 1176 1198 1205 1223 1209 1198 1243 1220 1241 1237 1258 1262 1227 1243 1281 1272 1295 1298 1318 1281 1320 1352 1336 1291 1342 1352 1377 1385 1356 1362 1349 1386 1358 1371 1362 1350 1381 1392 1371 1402 1384 1399 1369 1401 1388 1395 1412 1403 1415 1426 1431 1445 1425 1413 1456 Number On Time 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 1069 1080 1089 1199 1168 1160 1181 1189 1210 1194 1180 1223 1201 1224 1217 1242 1246 1212 1227 1264 1254 1278 1281 1296 1264 1304 1334 1320 1276 1326 1337 1360 1368 1338 1346 1333 1371 1342 1356 1348 1338 1366 1378 1359 1387 1370 1377 1357 1390 1376 1385 1401 1392 1402 1415 1420 1426 1414 1403 1427 Percent 40179 40210 40238 40269 40299 40330 40360 40391 40422 40452 40483 40513 40544 40575 40603 40634 40664 40695 40725 40756 40787 40817 40848 40878 40909 40940 40969 41000 41030 41061 41091 41122 41153 41183 41214 41244 41275 41306 41334 41365 41395 41426 41456 41487 41518 41548 41579 41609 41640 41671 41699 41730 41760 41791 41821 41852 41883 41913 41944 41974 0.98434622467771637 0.98092643051771122 0.97580645161290325 0.98601973684210531 0.9873203719357565 0.98639455782312924 0.9858096828046744 0.98672199170124486 0.98937040065412918 0.98759305210918114 0.9849749582637729 0.98390989541432017 0.98442622950819669 0.98630136986301364 0.98383185125303152 0.9872813990461049 0.98732171156893822 0.98777506112469438 0.98712791633145613 0.98672911787665885 0.98584905660377353 0.98687258687258683 0.98690292758089371 0.98330804248861914 0.98672911787665885 0.98787878787878791 0.98668639053254437 0.9880239520958084 0.98838109992254064 0.98807749627421759 0.98890532544378695 0.98765432098765427 0.98772563176895312 0.98672566371681414 0.98825256975036713 0.98813936249073386 0.98917748917748916 0.98821796759941094 0.98905908096280093 0.98972099853157125 0.99111111111111116 0.98913830557566984 0.98994252873563215 0.99124726477024072 0.98930099857346643 0.98988439306358378 0.98427448177269483 0.99123447772096418 0.99214846538187007 0.99135446685878958 0.99283154121863804 0.99220963172804533 0.99215965787598004 0.99081272084805649 0.99228611500701258 0.99231306778476591 0.98685121107266438 0.99228070175438599 0.99292285916489742 0.98008241758241754

We decided to use a clustered column chart to represent the On-Time deliveries for PLE's unit deliveries. The darker backgorund makes it easier to see the difference in the deliveries and the ones that were delivered on time to the customer. For example, for the month of January of 2010, PLE's had a total of 1086 deliveries but out of that number, 98.4% when delivered on-time. This chart makes is easy to compare those deliveries.

Response Time

Response times to customer service calls
tc={912794B6-EB87-4831-A2F0-71C2CACF797B}: [Threaded comment] Your version of Excel allows you to read this threaded comment; however, any edits to it will get removed if the file is opened in a newer version of Excel. Learn more: https://go.microsoft.com/fwlink/?linkid=870924 Comment: From the data in this line graph, on response time between quarters, we are able to determine that there is no correlation between response times and quarters from how the lines on the graph are random.
Q1 2013 Q2 2013 Q3 2013 Q4 2013 Q1 2014 Q2 2014 Q3 2014 Q4 2014
4.36 4.33 3.71 4.44 2.75 3.45 1.67 2.55
5.42 4.73 2.52 4.07 3.24 1.95 2.58 2.30
5.50 1.63 2.69 5.11 4.35 2.77 3.47 1.04
2.79 4.21 3.47 3.49 5.58 1.83 3.12 1.59
5.55 6.89 5.12 4.69 2.89 3.72 1.00 3.11
3.65 0.92 1.00 6.36 5.09 4.59 5.40 4.05
8.02 5.27 3.44 8.26 2.33 1.17 3.90 3.38
4.00 0.90 6.04 1.91 1.69 1.46 4.49 1.26
3.34 3.85 2.53 8.93 3.88 1.90 2.06 0.90
4.92 5.00 2.39 6.85 3.39 2.95 4.49 2.31
3.55 3.52 3.26 5.69 5.14 4.69 3.57 2.71
3.52 5.20 4.68 3.05 0.98 3.34 3.41 1.65
1.25 5.13 3.59 5.91 2.34 3.59 3.31 3.58
2.18 5.29 1.07 1.00 2.80 4.03 2.79 2.96
4.35 1.00 2.86 1.82 3.06 2.39 2.09 3.78
2.46 2.18 4.44 3.74 2.40 1.63 4.28 2.87
2.07 4.55 4.87 6.11 1.59 2.40 4.47 0.90
2.90 2.13 6.76 4.78 3.05 4.44 1.94 4.87
2.58 5.24 2.84 4.13 1.50 4.96 3.90 3.11
5.50 4.08 1.25 7.17 5.58 4.41 3.32 0.90
2.47 4.04 3.43 5.70 3.11 3.40 2.20 3.52
4.24 5.09 2.98 1.00 1.08 3.15 3.52 3.18
1.88 7.66 4.65 3.40 3.63 4.87 2.31 0.90
4.25 4.65 2.66 2.04 1.86 3.97 1.00 1.35
5.08 0.90 4.99 4.37 1.90 3.85 5.90 1.62
4.40 2.01 3.76 2.47 6.07 2.81 1.09 1.87
1.64 1.34 3.12 3.20 1.00 1.76 4.60 1.03
6.40 8.05 2.12 5.83 1.00 5.58 3.52 2.31
3.68 4.91 4.32 3.94 1.19 4.92 4.14 1.99
3.92 5.06 3.61 2.47 3.79 2.63 4.13 3.97
4.13 3.26 4.02 3.89 5.86 3.27 2.43 1.00
3.34 4.26 2.63 6.88 0.90 2.86 2.34 3.51
3.28 1.70 4.47 1.71 2.24 3.83 2.53 2.41
3.24 2.30 4.18 6.39 0.90 1.79 4.14 2.47
3.25 5.35 4.73 6.57 3.87 2.70 2.65 4.02
5.20 2.33 2.65 4.18 2.46 3.61 3.21 2.03
5.28 3.67 2.36 8.82 3.84 0.90 3.85 3.62
4.33 4.73 3.64 3.35 2.43 3.38 2.20 4.12
4.64 1.05 5.62 5.50 1.54 4.38 4.57 1.40
2.65 2.67 0.90 6.51 0.90 2.87 2.99 2.49
3.42 4.16 6.40 0.90 3.69 2.11 4.19 2.67
3.97 0.90 3.21 2.87 1.73 2.86 3.03 4.33
1.26 3.51 3.55 7.45 3.52 3.12 1.90 1.95
6.16 5.95 5.93 3.49 2.23 1.86 2.09 2.70
6.40 2.05 5.52 3.03 5.35 2.41 1.03 1.76
1.00 8.21 4.96 7.46 5.11 2.98 2.95 2.64
3.63 2.52 4.85 4.84 6.46 0.90 7.42 4.49
5.34 3.99 5.57 2.88 5.61 1.01 3.79 1.62
3.74 2.59 4.82 0.95 3.63 4.56 2.48 1.10
5.63 1.34 3.18 3.05 3.87 5.67 2.71 4.50

Response Time by Quarter and Year

Q1 2013 4.356805690747569 5.415645561640849 5.50147957886802 2.7866492627596018 5.5495684291032372 3.6535666521900567 8.0191382648423311 4.0045367922517467 3.3431904438999482 4.9159115332600773 3.5546503494857462 3.5231651208392578 1.2533953549223953 2.1813659868144897 4.3525112841394726 2.4588828336505686 2.0693403411656619 2.9026272313218215 2.5783995324105491 5.4993536350026258 2.4736523454863346 4.2446331617044049 1.8764321948197904 4.2502707783001821 5.0840524335741062 4.4030024509425854 1.6400465637503658 6.4004832592559975 3.6791089013946476 3.9198121311870637 4.1274743279587707 3.3353070575118 182 3.2786815763189225 3.2441311231537839 3.2535645158874105 5.199402282357914 5.281745886293356 4.3296535222340022 4.6425480076664822 2.6515938470198308 3.4188237959257095 3.9721818592966884 1.2641333041188774 6.1579749098542376 6.4025937417114616 1 3.6338166336805444 5.3400354017299829 3.7376013478366077 5.6347801245807201 Q2 2013 4.3325643203628719 4.7253575742855904 1.6261836647812742 4.205002231471008 6.8870843718526888 0.92273817092645904 5.2676703929377258 0.9 3.8496963027922901 5.0034296676371017 3.5156336692365584 5.1965592759428549 5.1282537227292782 5.2852813935955059 1 2.1758940859639551 4.554598807159346 2.1334770720626692 5.241364395557321 4.0773214535205629 4.0392099875374701 5.0861743587360255 7.6592344597214836 4.6470289347111251 0.9 2.0076011863478924 1.3415140968631021 8.0482562664896253 4.913553401207901 5.0573001756914895 3.2576159340591402 4.263339950126829 1.6992101776180788 2.2969732966215815 5.3534252841258425 2.3312703418254386 3.6666470790136372 4.7275287655123979 1.0453071339055895 2.6700355177366872 4.1573383426351942 0.9 3.5076733168592908 5.9505744942056484 2.0504684001265558 8.2124891817569736 2.5168079431081423 3.9860188720253062 2.5933316904469392 1.3390093484544194 Q3 2013 3.7146412572171541 2.5241054166387769 2.6896680131601172 3.4734687281586232 5.121887857355178 1 3.4443303369032221 6.0388986233435578 2.5292204148415478 2.3882014423422517 3.2575328580848875 4.6841771612223244 3.5920977600896733 1.0686919770948591 2.8610331858787688 4.4406181180663413 4.8667564036138362 6.7562134566530592 2.8361203070078047 1.2506345731951298 3.4268334778305145 2.9840077834948899 4.6549896572530276 2.658026692485437 4.9887814887613064 3.7590027707908304 3.1200700098695235 2.1182925186865034 4.3161646820651374 3.6110861904732885 4.020589817925357 2.6307855071779342 4.4749861038569367 4.1842934072762734 4.729422703646124 2.646999978721142 2.3632449077256026 3.6397843862930315 5.6180936147272593 0.9 6.4001208150573081 3.2102573234867307 3.5474379322538154 5.9302431103121496 5.5190132619161165 4.9623297448549426 4.8508693501632667 5.5698431018088019 4.817243512049318 3.1770789567660542 Q4 2013 4.4392094297145377 4.0731587306290749 5.112268023462093 3.4856877947313478 4.6882091838633642 6.3605414298799587 8.2577867134241387 1.9114045345340855 8.9296140787191689 6.8537110665638465 5.687837084318744 3.0470982993429061 5.9130352484353352 1 1.8187038323085289 3.7439606431726133 6.1054524950159248 4.7754579200991429 4.1273587031391799 7.174651283188723 5.7005295376293361 1 3.3979271266653086 2.0414006586215692 4.3706494453581399 2.4660232712485595 3.2023929280549055 5.833204123613541 3.9361662048613653 2.4685073286527768 3.8865800989733543 6.875510290323291 1.7119800860236865 6.3871489247540012 6.5707099666760769 4.1814614734030329 8.8249639803543687 3.3480947750867927 5.499761538070743 6.5071526579267811 0.9 2.8718966505985009 7.4505069379520137 3.4878651250473922 3.0321399536696845 7.4588620110298507 4.844769601826556 2.8833146744582336 0.95167707614018582 3.0501850106738857 Q1 2014 2.7456040207704064 3.2393556203765912 4.3539226190710902 5.5837254386511628 2.894123937135737 5.0948083718190897 2.3263553849625169 1.6863519214035478 3.8792584710841767 3.3915317054430489 5.1440984371816736 0.98274408274446623 2.3405503235204379 2.8036798049521168 3.0573333298030776 2.4015251220640494 1.5885425874381327 3.0502597347600386 1.5024861987563782 5.5816790755721737 3.1106598463389674 1.0826270646299236 3.6316638862495894 1.8572607551555849 1.8951628099835944 6.0711554816458371 1 1 1.1885672812291888 3.7861455403850415 5.8584701456362378 0.9 2.2395776532954188 0.9 3.8749611086182996 2.464285372394079 3.8408806368403021 2.429744468923309 1.5390717600035715 0.9 3.6867980235052529 1.7277737207274186 3.5219481297695894 2.2330224702323904 5.3514018382935316 5.1112406673433721 6.4554624678799879 5.6095641831285317 3.6320509899320315 3.8695416570641101 Q2 2014 3.4465603756718339 1.95467528909212 2.7691193817037858 1.830401933041867 3.7153588062967176 4.588204054819653 1.1652720867306927 1.4585909492627254 1.8973007253254766 2.954022155684652 4.6879442460369321 3.3438613708160121 3.5946013293898433 4.0304668881464751 2.3857898749003654 1.6263281476160047 2.3982745086716024 4.4406580935930835 4.9579172890691554 4.4146033441240435 3.3970261109818241 3.1488661615032472 4.8728326954762453 3.969714915804798 3.8509883405669827 2.8099522832082586 1.7614722390891986 5.5786442397977227 4.9162933545478156 2.6285494722134901 3.2720810930943118 2.8562667092803169 3.8348668648570312 1.7931613082357218 2.7003026924678126 3. 6135908966418357 0.9 3.3844030066422421 4.3807401278929321 2.872878402634524 2.1136076692375356 2.8578058016893921 3.1247515916067643 1.8599295880296269 2.4143211784423331 2.9756362972722856 0.9 1.0139794620801696 4.5589501577371268 5.6660748749738561 Q3 2014 1.6701319585336023 2.5849427136818122 3.4712812824436696 3.1168675112239725 1 5.3960551516211126 3.895330913408543 4.4883640915286378 2.0577209700859385 4.4860002011118922 3.5669281790687819 3.4085343334736535 3.3083657134084206 2.7882290472261957 2.0893796280033712 4.2785482113031321 4.4665714616057812 1.9354151921361336 3.8966397899712319 3.3183290004926675 2.1960299894344644 3.5221082233219931 2.3136046896324842 1 5.8955778361705597 1.0873686808990897 4.5958403309923597 3.5192415528654237 4.1415744438636466 4.1337970136082731 2.4295045553371892 2.3373820643682848 2.5318425476398261 4.1416370853112312 2.6456999724614434 3.211152780593693 3.85011697592563 2.202989783952944 4.573015765643504 2.9913637225290586 4.1850706869154237 3.0259632315646741 1.9018393762307824 2.0914913041706313 1.0339421199460048 2.9528837406614912 7.4192420318722725 3.7933836059237365 2.4752080851867504 2.7128647919453215 Q4 2014 2.5510757682699476 2.3031384176196297 1.0432483764365315 1.5865764185495208 3.1144282689187093 4.0469112450868128 3.3778203219757414 1.2557568157266359 0.9 2.3109832641697721 2.7098836613280581 1.6538044479151721 3.5820508815508219 2.9565219124837312 3.7752575695325503 2.8747584524811827 0.90147952555562361 4.8724379853869326 3.1082047103613148 0.9 3.5162579211377305 3.1823331897161551 0.9 1.3526853040733839 1.6183518896927125 1.8669454407703596 1.0325304361234884 2.31182863949507 1.9896637882542563 3.9689445844036526 1 3.5086081612011184 2.410366592403443 2.4695753796098869 4.0189783890586117 2.0281505344886681 3.6200026175269158 4.1219250038469912 1.4048089001793413 2.4852340362034737 2.6676015937031479 4.3273157376010207 1.9502917626145062 2.7026329421918489 1.758633944109897 2.6436946159723447 4.4879045349720403 1.6248547768103889 1.1000000000000001 4.4970204003679104

From the data in this line graph, on response time between quarters, we are able to determine that there is no correlation between response times and quarters from how the lines on the graph are random.

Part 2 – Shipping Cost

Unit Shipping Cost
Plant Existing /Proposed Customer Mowers Tractors Plant Existing /Proposed
Kansas City Existing Toronto $1.36 $1.79 Kansas City Existing
Santiago Existing Toronto $1.49 $2.13 Santiago Existing
Kansas City Existing Shanghai $1.58 $2.13 Auckland Proposed
Santiago Existing Shanghai $1.47 $2.03 Birmingham Proposed
Kansas City Existing Mexico City $1.32 $1.76 Frankfurt Proposed
Santiago Existing Mexico City $1.22 $1.58 Mumbai Proposed
Kansas City Existing Melbourne $1.72 $2.34 Singapore Proposed
Santiago Existing Melbourne $1.49 $1.80
Kansas City Existing London $1.49 $1.86
Santiago Existing London $1.58 $2.14
Kansas City Existing Caracas $1.54 $1.90
Santiago Existing Caracas $1.00 $1.26
Kansas City Existing Atlanta $1.31 $1.82
Santiago Existing Atlanta $1.31 $1.76
Singapore Proposed Toronto $1.71 $2.03
Birmingham Proposed Toronto $1.34 $1.78 Mowers Tactors
Frankfurt Proposed Toronto $1.52 $1.87 Quartiles Existing Proposed Existing Proposed
Mumbai Proposed Toronto $1.67 $2.14 1 25% $ 1.31 $ 1.77 $ 1.40 $ 1.78
Auckland Proposed Toronto $1.86 $2.19 2 50% $ 1.48 $ 1.84 $ 1.52 $ 2.01
Singapore Proposed Shanghai $1.44 $1.78 3 75% $ 1.53 $ 2.11 $ 1.66 $ 2.17
Birmingham Proposed Shanghai $1.60 $2.15 4 100% $ 1.72 $ 2.34 $ 1.98 $ 2.68
Frankfurt Proposed Shanghai $1.65 $2.32
Mumbai Proposed Shanghai $1.21 $1.47
Auckland Proposed Shanghai $1.18 $1.63
Singapore Proposed Mexico City $1.72 $2.09
Birmingham Proposed Mexico City $1.29 $1.79
Frankfurt Proposed Mexico City $1.54 $2.04
Mumbai Proposed Mexico City $1.56 $2.22
Auckland Proposed Mexico City $1.50 $2.07
Singapore Proposed Melbourne $1.43 $1.70
Birmingham Proposed Melbourne $1.52 $2.06
Frankfurt Proposed Melbourne $1.73 $2.28
Mumbai Proposed Melbourne $1.38 $1.63
Auckland Proposed Melbourne $0.91 $1.17
Singapore Proposed London $1.88 $2.68
Birmingham Proposed London $1.47 $1.77
Frankfurt Proposed London $1.37 $1.64
Mumbai Proposed London $1.44 $1.82
Auckland Proposed London $1.98 $2.60
Singapore Proposed Caracas $1.50 $2.01
Birmingham Proposed Caracas $1.37 $1.86
Frankfurt Proposed Caracas $1.59 $1.88
Mumbai Proposed Caracas $1.61 $2.08
Auckland Proposed Caracas $1.54 $1.98
Singapore Proposed Atlanta $1.73 $2.35
Birmingham Proposed Atlanta $1.02 $1.25
Frankfurt Proposed Atlanta $1.42 $1.70
Mumbai Proposed Atlanta $1.57 $2.23
Auckland Proposed Atlanta $1.74 $2.26

You can see in the table of quartiles with Mowers and Tactors in Existing and Proposed shipping cost locations that Mowers have a slight increase in shipping costs in the proposed then the existing. There is also an increase in shipping cost in Tactors in Proposed locations compared to Existing locations.

Fixed Cost

Fixed Costs of Capacity Increase or New Construction
Current Plants Additional Capacity Cost
Kansas City 10000 $605,000.00
Kansas City 20000 $985,000.00
Santiago 5000 $381,000.00
Santiago 10000 $680,000.00
Proposed Locations Maximum capacity Cost
Auckland 15,000 $917,000.00
Auckland 20,000 $1,136,000.00
Birmingham 15,000 $962,000.00
Birmingham 20,000 $1,180,000.00
Frankfurt 15,000 $874,000.00
Frankfurt 20,000 $1,093,000.00
Mumbai 15,000 $750,000.00
Mumbai 25,000 $959,000.00
Singapore 15,000 $839,000.00
Singapore 20,000 $1,058,000.00

Part 3 – Regions and Averages

Row Labels Average of Ease of Use Average of Quality Average of Price Average of Service
China 4.10 3.80 3.00 2.60
Eur 4.33 4.10 3.90 3.87
NA 4.27 4.60 3.71 4.31
Pac 3.90 4.40 4.10 4.30
SA 3.92 4.28 3.50 4.24
Grand Total 4.17 4.40 3.67 4.14

part 3

Row Labels Average of Price Average of Service Average of Ease of Use Average of Quality
China 3 2.6 4.1 3.8
Eur 3.9 3.8666666667 4.3333333333 4.1
NA 3.71 4.31 4.27 4.6
Pac 4.1 4.3 3.9 4.4
SA 3.5 4.24 3.92 4.28
Grand Total 3.67 4.14 4.165 4.395

Average of Price China Eur NA Pac SA 3 3.9 3.71 4.0999999999999996 3.5 Average of Service China Eur NA Pac SA 2.6 3.8666666666666667 4.3099999999999996 4.3 4.24 Average of Ease of Use China Eur NA Pac SA 4.0999999999999996 4.333333333333333 4.2699999999999996 3.9 3.92 Average of Quality China Eur NA Pac SA 3.8 4.0999999999999996 4.5999999999999996 4.4000000000000004 4.28

Q1

Anova: Single Factor
SUMMARY
Groups Count Sum Average Variance
Quality 200 879 4.395 0.5818844221
Ease of Use 200 833 4.165 0.6108291457
Price 200 734 3.67 1.1367839196
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 54.9033333333 2 27.4516666667 35.3531181914 0 3.0108152042
Within Groups 463.57 597 0.7764991625
Total 518.4733333333 599

Part 3 – 2014 Customer Survey

2014 Customer Survey
Quartiles
Region Quality Ease of Use Price Service North America South America Europe Pacific Rim China
NA 4 1 3 4 Quality Ease of Use Price Service Quality Ease of Use Price Service Quality Ease of Use Price Service Quality Ease of Use Price Service Quality Ease of Use Price Service
NA 4 4 4 5 0 0% 1 1 1 2 0 0% 1 1 1 1 0 0% 2 3 1 1 0 0% 3 2 3 3 0 0% 2 3 2 1
NA 4 5 4 3 1 25% 4 4 3 4 1 25% 4 4 3 4 1 25% 4 4 4 3.25 1 25% 3 2 3 3 1 25% 3.25 4 3 2
NA 5 4 4 4 2 50% 5 4 4 4 2 50% 4 4 4 4 2 50% 4 4 4 4 2 50% 4 4 4 4 2 50% 4 4 3 3
NA 5 4 5 4 3 75% 5 5 4.25 5 3 75% 5 4 4 5 3 75% 5 5 5 4.75 3 75% 4.5 4 4 4 3 75% 4 4 3 3
NA 5 5 3 5 4 100% 5 5 5 5 4 100% 5 5 5 5 4 100% 5 5 5 5 4 100% 5 4 4 5 4 100% 5 5 4 4
NA 5 4 4 2
NA 5 5 4 5
NA 4 4 4 5
NA 4 5 4 5
NA 4 5 1 4
NA 5 5 4 4 Frequency Distrbution
NA 5 4 3 3 North America South America Europe Pacific Rim China
NA 4 5 4 4 Value Quality Ease of Use Price Service Value Quality Ease of Use Price Service Value Quality Ease of Use Price Service Value Quality Ease of Use Price Service Value Quality Ease of Use Price Service
NA 5 4 3 5 1 1 2 5 0 1 1 1 2 1 1 0 0 2 1 1 0 0 0 0 1 0 0 0 1
NA 5 5 2 5 2 0 2 10 3 2 0 1 8 0 2 1 0 1 2 2 0 1 0 0 2 1 0 2 3
NA 5 4 2 5 3 3 6 19 8 3 4 6 10 6 3 6 3 4 5 3 1 1 1 1 3 2 1 6 5
NA 5 4 2 5 4 30 47 41 44 4 24 35 23 22 4 12 14 14 14 4 4 6 7 5 4 5 7 2 1
NA 4 5 4 4 5 66 43 25 45 5 21 7 7 21 5 11 13 9 8 5 5 2 2 4 5 2 2 0 0
NA 4 4 5 4
NA 4 4 2 4
NA 4 3 3 4
NA 5 5 2 5
NA 5 3 4 3
NA 5 4 4 5
NA 5 5 2 5
NA 5 5 5 3
NA 4 4 5 4
NA 5 4 4 4
NA 5 1 5 5
NA 5 4 3 5
NA 4 5 1 4
NA 4 4 3 5
NA 5 3 4 4
NA 5 5 2 4
NA 5 4 4 4
NA 5 5 4 4
NA 5 5 4 5
NA 4 3 3 5
NA 5 4 4 3
NA 5 4 3 4
NA 5 5 1 5
NA 5 4 5 4
NA 3 4 3 4
NA 5 4 2 4
NA 5 5 4 5
NA 5 5 3 4
NA 5 4 4 4
NA 5 4 4 4
NA 5 4 4 5
NA 5 4 1 4
NA 5 4 5 5
NA 5 5 3 4
NA 5 4 4 5
NA 4 3 5 5
NA 5 4 4 4 Q1
NA 5 5 5 5
NA 5 5 4 5 Anova: Single Factor
NA 4 4 4 4
NA 5 4 5 5 SUMMARY
NA 4 5 5 4 Groups Count Sum Average Variance
NA 5 5 5 4 Quality 200 879 4.395 0.5818844221
NA 5 5 3 5 Ease of Use 200 833 4.165 0.6108291457
NA 5 4 4 4 Price 200 734 3.67 1.1367839196
NA 5 4 5 2
NA 4 4 5 5
NA 4 4 4 5 ANOVA
NA 5 4 4 4 Source of Variation SS df MS F P-value F crit
NA 5 4 3 5 Between Groups 54.9033333333 2 27.4516666667 35.3531181914 0 3.0108152042
NA 5 4 5 4 Within Groups 463.57 597 0.7764991625
NA 5 5 4 5
NA 5 4 4 4 Total 518.4733333333 599
NA 5 4 5 2
NA 5 3 4 5
NA 5 4 5 5
NA 5 4 1 5
NA 4 5 3 5
NA 3 5 2 5
NA 5 5 4 4
NA 4 4 3 5
NA 3 2 4 5
NA 1 4 3 4
NA 4 5 3 5
NA 5 5 4 4
NA 4 5 5 5
NA 5 5 4 5
NA 5 5 4 4
NA 4 2 4 5
NA 5 4 5 4
NA 5 4 5 4
NA 5 5 4 3
NA 5 5 5 5
NA 4 5 5 3
NA 5 5 4 5
NA 4 4 5 5
NA 5 5 3 4
NA 4 5 2 4
NA 5 5 5 4
NA 4 5 4 3
NA 4 5 5 4
SA 5 4 3 5
SA 5 4 2 4
SA 5 4 5 5
SA 4 2 4 5
SA 5 4 4 5
SA 4 5 2 5
SA 5 4 4 4
SA 4 5 3 5
SA 4 4 4 3
SA 4 4 2 4
SA 5 4 3 4
SA 3 3 5 5
SA 5 4 3 4
SA 5 4 2 5
SA 4 4 3 4
SA 4 4 3 5
SA 1 5 3 4
SA 5 4 2 4
SA 4 4 4 4
SA 4 4 5 5
SA 5 4 2 4
SA 4 4 5 5
SA 4 4 4 3
SA 3 3 4 5
SA 5 4 4 4
SA 4 4 4 1
SA 4 5 5 5
SA 4 1 4 5
SA 4 5 4 4
SA 4 4 4 5
SA 5 4 3 4
SA 4 4 4 5
SA 5 5 4 3
SA 5 5 4 4
SA 4 4 2 4
SA 4 4 4 5
SA 5 4 4 5
SA 5 4 4 4
SA 5 4 1 4
SA 3 4 4 5
SA 4 3 5 4
SA 4 4 2 3
SA 5 4 3 3
SA 4 3 4 5
SA 5 3 5 5
SA 5 4 4 4
SA 5 4 4 4
SA 3 4 3 4
SA 4 4 1 4
SA 4 3 4 3
Eur 4 5 5 3
Eur 4 4 4 2
Eur 3 4 5 4
Eur 3 4 1 3
Eur 4 4 5 5
Eur 5 5 5 5
Eur 5 5 5 1
Eur 4 5 5 4
Eur 3 4 4 4
Eur 3 5 3 3
Eur 4 4 5 4
Eur 5 4 5 5
Eur 5 3 4 4
Eur 5 5 4 5
Eur 3 4 4 4
Eur 4 5 4 5
Eur 4 5 4 4
Eur 5 4 4 5
Eur 4 5 4 4
Eur 3 5 3 4
Eur 4 4 4 2
Eur 5 5 3 4
Eur 5 3 4 5
Eur 4 5 2 4
Eur 4 3 4 4
Eur 5 4 3 3
Eur 2 4 4 4
Eur 5 4 5 4
Eur 4 5 4 3
Eur 5 4 1 5
Pac 5 4 4 5
Pac 5 5 5 5
Pac 4 4 4 4
Pac 4 3 4 4
Pac 5 4 5 4
Pac 4 4 4 4
Pac 5 5 4 5
Pac 4 2 3 3
Pac 3 4 4 4
Pac 5 4 4 5
China 5 5 4 4
China 5 5 4 3
China 4 4 3 3
China 4 4 3 3
China 4 4 3 2
China 4 4 3 3
China 4 4 3 2
China 3 4 3 3
China 3 4 2 2
China 2 3 2 1

North America

1 Quality Ease of Use Price Service 1 2 5 0 2 Quality Ease of Use Price Service 0 2 10 3 3 Quality Ease of Use Price Service 3 6 19 8 4 Quality Ease of Use Price Service 30 47 41 44 5 Quality Ease of Use Price Service 66 43 25 45

South America

1 Quality Ease of Use Price Service 1 1 2 1 2 Quality Ease of Use Price Service 0 1 8 0 3 Quality Ease of Use Price Service 4 6 10 6 4 Quality Ease of Use Price Service 24 35 23 22 5 Quality Ease of Use Price Service 21 7 7 21

Europe

1 Quality Ease of Use Price Service 0 0 2 1 2 Quality Ease of Use Price Service 1 0 1 2 3 Quality Ease of Use Price Service 6 3 4 5 4 Quality Ease of Use Price Service 12 14 14 14 5 Quality Ease of Use Price Service 11 13 9 8

Pacific Rim

1 Quality Ease of Use Price Service 0 0 0 0 2 Quality Ease of Use Price Service 0 1 0 0 3 Quality Ease of Use Price Service 1 1 1 1 4 Quality Ease of Use Price Service 4 6 7 5 5 Quality Ease of Use Price Service 5 2 2 4

China

1 Quality Ease of Use Price Service 0 0 0 1 2 Quality Ease of Use Pric e Service 1 0 2 3 3 Quality Ease of Use Price Service 2 1 6 5 4 Quality Ease of Use Price Service 5 7 2 1 5 Quality Ease of Use Price Service 2 2 0 0

In this chart with the frequency distribution for North America, you can see that the quality, ease of use, and service production areas don't need to really change anything. Those areas can do the same thing they are doing. The price section in this chart needs improvment in their pricing, by the wide variation in the distribution, you can reduce costs or use different materials.

In this chart with the frequency distribution for South America, you can see that quality and service areas don't need to change anything they can keep on doing what they are doing. The ease of use can improve in turing all of those 4's into 5's for better ratings. Price again can change by reducing costs or changing materials to reduce the pricing.

In this chart with the frequency distribution shown in a historgram for Europe region, you can see all areas; quality, ease of use, price, and service all need improvments to get higher ratings from consumers. Price can reduce costs. Service can train their service workers to help customers better. Ease of use can improve the design of the product. Quality can improve on the procurment side to making better products.

In this chart with the frequency distribution shown in a histogram for Pacific Rim region, you can see most of the areas most rated number is 4's. So, service, price, and ease of use can improve a little bit to make some of those 4's into 5's. Quality can improve the overall quality in products from the procurment side.

In this chart showning the China regions distribution between areas and ratings. All areas need improvment to make the customers want to get these products again. Quality needs to improve the quality of the product by changing the procument side of things. Ease of use comes from that if the quality is good and making it easy to use will follow a little. We need to train or hire more people to help with the companies customer service so our customers have a good experience with our company. Overall everything is connected so if you focus on some areas the others will some what follow.

Unit Production Costs

Unit Production Costs
Month Tractor Mower
Jan-10 $1,750 $50
Feb-10 $1,755 $50
Mar-10 $1,763 $51
Apr-10 $1,770 $51
May-10 $1,778 $51
Jun-10 $1,785 $51
Jul-10 $1,792 $51
Aug-10 $1,795 $51
Sep-10 $1,801 $52
Oct-10 $1,804 $52
Nov-10 $1,810 $52
Dec-10 $1,813 $52
Jan-11 $1,835 $55
Feb-11 $1,841 $55
Mar-11 $1,848 $55
Apr-11 $1,854 $55
May-11 $1,860 $56
Jun-11 $1,866 $56
Jul-11 $1,872 $56
Aug-11 $1,878 $56
Sep-11 $1,885 $56
Oct-11 $1,892 $57
Nov-11 $1,897 $57
Dec-11 $1,903 $57
Jan-12 $1,925 $59
Feb-12 $1,931 $59
Mar-12 $1,938 $59
Apr-12 $1,944 $59
May-12 $1,950 $59
Jun-12 $1,956 $60
Jul-12 $1,963 $60
Aug-12 $1,969 $60
Sep-12 $1,976 $60
Oct-12 $1,983 $60
Nov-12 $1,990 $61
Dec-12 $1,996 $61
Jan-13 $1,940 $59
Feb-13 $1,946 $59
Mar-13 $1,952 $59
Apr-13 $1,958 $59
May-13 $1,964 $60
Jun-13 $1,970 $60
Jul-13 $1,976 $60
Aug-13 $1,983 $60
Sep-13 $1,990 $60
Oct-13 $1,996 $60
Nov-13 $2,012 $61
Dec-13 $2,008 $61
Jan-14 $2,073 $63
Feb-14 $2,077 $63
Mar-14 $2,081 $63
Apr-14 $2,086 $63
May-14 $2,092 $63
Jun-14 $2,098 $63
Jul-14 $2,104 $64
Aug-14 $2,110 $64
Sep-14 $2,116 $64
Oct-14 $2,122 $64
Nov-14 $2,129 $64
Dec-14 $2,135 $64

Operating & Interest Expenses

Operating and Interest Expenses
Month Administrative Depreciation Interest
Jan-10 $633,073 $140,467 $7,244
Feb-10 $607,904 $165,636 $7,679
Mar-10 $630,687 $142,853 $6,887
Apr-10 $613,401 $160,139 $6,917
May-10 $607,664 $165,876 $8,316
Jun-10 $632,967 $140,573 $7,428
Jul-10 $609,604 $163,936 $8,737
Aug-10 $607,749 $165,791 $7,054
Sep-10 $603,367 $170,173 $8,862
Oct-10 $629,083 $144,457 $8,488
Nov-10 $611,995 $161,545 $7,049
Dec-10 $625,712 $147,828 $8,807
Jan-11 $656,123 $175,447 $7,430
Feb-11 $652,679 $178,891 $6,791
Mar-11 $655,521 $176,049 $8,013
Apr-11 $676,581 $154,989 $8,979
May-11 $676,581 $154,989 $7,484
Jun-11 $656,440 $175,130 $7,858
Jul-11 $661,969 $169,601 $7,424
Aug-11 $677,212 $154,358 $6,848
Sep-11 $653,545 $178,025 $6,751
Oct-11 $657,388 $174,182 $8,160
Nov-11 $672,475 $159,095 $7,898
Dec-11 $656,325 $175,245 $8,953
Jan-12 $723,594 $226,526 $9,443
Feb-12 $759,042 $191,078 $8,464
Mar-12 $749,187 $200,933 $10,264
Apr-12 $751,499 $198,621 $8,547
May-12 $741,452 $208,668 $8,578
Jun-12 $729,122 $220,998 $9,519
Jul-12 $734,783 $215,337 $9,343
Aug-12 $748,208 $201,912 $8,448
Sep-12 $738,186 $211,934 $9,957
Oct-12 $759,403 $190,717 $9,738
Nov-12 $726,183 $223,937 $9,785
Dec-12 $757,037 $193,083 $8,191
Jan-13 $672,232 $179,138 $9,914
Feb-13 $665,023 $186,347 $9,954
Mar-13 $667,657 $183,713 $10,859
Apr-13 $654,198 $197,172 $9,730
May-13 $659,435 $191,935 $10,430
Jun-13 $661,190 $190,180 $10,222
Jul-13 $647,321 $204,049 $10,102
Aug-13 $666,743 $184,627 $10,610
Sep-13 $678,705 $172,665 $9,374
Oct-13 $658,990 $192,380 $10,830
Nov-13 $656,221 $195,149 $9,017
Dec-13 $676,934 $174,436 $10,423
Jan-14 $641,571 $210,589 $9,985
Feb-14 $634,973 $217,187 $9,766
Mar-14 $662,054 $190,106 $11,148
Apr-14 $654,962 $197,198 $9,339
May-14 $645,579 $206,581 $9,468
Jun-14 $658,112 $194,048 $10,324
Jul-14 $637,711 $214,449 $9,737
Aug-14 $638,317 $213,843 $9,290
Sep-14 $651,996 $200,164 $9,213
Oct-14 $630,766 $221,394 $10,143
Nov-14 $645,095 $207,065 $10,383
Dec-14 $637,807 $214,353 $9,059

Industry Mower Total Sales

Industry Mower Total Sales
Month NA SA Eur Pac World
Jan-10 60000 571 13091 1045 74662
Feb-10 77184 611 17679 1111 96585
Mar-10 77885 658 22759 1068 102369
Apr-10 86190 778 27966 1237 116171
May-10 96117 886 27895 1313 126210
Jun-10 97143 882 30566 1176 129768
Jul-10 84757 848 29444 1359 116409
Aug-10 79804 735 28364 1238 110141
Sep-10 64800 657 28393 1215 95065
Oct-10 59307 595 24444 1154 85500
Nov-10 52157 553 18000 1262 71972
Dec-10 45049 462 12453 1386 59349
Jan-11 58627 553 12778 1443 73401
Feb-11 76200 615 18214 1515 96545
Mar-11 82871 658 23889 1373 108791
Apr-11 84904 784 29455 1442 116584
May-11 93100 846 29464 1215 124625
Jun-11 93000 838 27414 1333 122585
Jul-11 83048 763 27368 1415 112594
Aug-11 74854 694 27321 1296 104164
Sep-11 60769 625 29444 1402 92241
Oct-11 55619 610 23774 1468 81470
Nov-11 48155 571 17308 1351 67386
Dec-11 42647 512 12941 1389 57489
Jan-12 57885 537 10962 1509 70892
Feb-12 77647 595 15273 1402 94917
Mar-12 81845 659 20556 1524 104583
Apr-12 86095 756 26786 1574 115211
May-12 91776 878 24828 1468 118949
Jun-12 100680 825 24737 1560 127801
Jul-12 86190 756 24828 1441 113216
Aug-12 71887 714 25179 1545 99325
Sep-12 60000 651 24545 1667 86863
Oct-12 55566 643 19286 1698 77193
Nov-12 50857 619 15273 1810 68558
Dec-12 42596 548 9107 1731 53982
Jan-13 58095 581 8571 1887 69135
Feb-13 75566 614 13158 1845 91182
Mar-13 80286 622 19655 1923 102486
Apr-13 85140 727 25179 1981 113027
May-13 90093 826 23103 1810 115832
Jun-13 95472 783 24286 1942 122482
Jul-13 87308 681 24737 1961 114686
Aug-13 74476 646 26607 2000 103729
Sep-13 61698 625 22982 2075 87381
Oct-13 57238 617 16897 2019 76771
Nov-13 50673 587 13750 2095 67105
Dec-13 51238 591 7818 2150 61797
Jan-14 59712 563 7547 1852 69673
Feb-14 77961 571 13889 1743 94165
Mar-14 83725 625 18302 1892 104544
Apr-14 90297 723 25192 2037 118250
May-14 91143 848 24706 1887 118583
Jun-14 99320 792 25306 1944 127363
Jul-14 93922 745 27083 2170 123919
Aug-14 73143 739 26042 2037 101961
Sep-14 66699 667 26304 2018 95688
Oct-14 56476 660 22558 2072 81766
Nov-14 51068 625 14773 2182 68648
Dec-14 46893 608 6977 2035 56510

Industry Tractor Total Sales

Industry Tractor Total Sales
Month NA SA Eur Pac China World
Jan-10 8143 984 5091 987 278 15483
Feb-10 8592 1051 5310 1090 283 16325
Mar-10 8630 1016 6071 1127 285 17129
Apr-10 8947 1027 5856 1209 288 17327
May-10 8442 1057 5273 1221 286 16278
Jun-10 7500 1019 5315 1327 287 15448
Jul-10 6145 977 7170 1324 289 15905
Aug-10 5882 1057 5926 1268 290 14422
Sep-10 5595 1086 6075 1209 293 14258
Oct-10 5233 1045 6321 1168 295 14061
Nov-10 4494 1078 8381 1127 298 15378
Dec-10 3913 1029 7944 1085 301 14272
Jan-11 5938 1172 5688 1185 306 14289
Feb-11 6633 1273 7037 1286 302 16530
Mar-11 7327 1423 6981 1286 303 17320
Apr-11 8077 1612 7500 1346 307 18842
May-11 7830 1728 6571 1388 309 17826
Jun-11 7103 1815 6990 1449 312 17669
Jul-11 6239 1776 6667 1490 315 16487
Aug-11 6036 1685 6762 1449 318 16250
Sep-11 5664 1679 6635 1394 321 15692
Oct-11 5345 1618 6311 1256 315 14844
Nov-11 4831 1564 6476 1214 318 14402
Dec-11 4454 1522 6250 1171 320 13716
Jan-12 5299 1835 5922 1208 333 14597
Feb-12 6529 2115 6667 1214 313 16836
Mar-12 7120 2202 7228 1256 606 18412
Apr-12 7619 2151 8200 1311 571 19852
May-12 8387 2214 7941 1415 556 20513
Jun-12 8110 2278 7921 1520 526 20355
Jul-12 7752 2100 7677 1675 513 19716
Aug-12 6894 2128 7200 1584 769 18575
Sep-12 6015 2367 6735 1527 750 17394
Oct-12 5368 2211 6495 1422 732 16226
Nov-12 4964 2483 6061 1366 714 15587
Dec-12 4444 1986 5816 1262 698 14207
Jan-13 5000 2257 5051 1373 714 14394
Feb-13 6284 2353 6082 1436 1063 17218
Mar-13 7785 2457 6327 1478 1264 19310
Apr-13 9934 2517 7604 1512 1333 22901
May-13 10645 2612 7789 1642 1556 24244
Jun-13 9491 2749 7347 1667 1739 22993
Jul-13 9182 2887 6979 1733 1702 22483
Aug-13 8528 2833 6489 1700 1915 21465
Sep-13 8293 2789 6316 1642 2083 21123
Oct-13 8221 2765 5833 1576 2128 20523
Nov-13 7470 2746 5789 1493 2292 19789
Dec-13 6509 2534 5591 1450 2245 18329
Jan-14 7267 2635 5106 1010 2292 18311
Feb-14 8807 2703 5474 1045 2449 20477
Mar-14 10168 2795 6022 1106 2400 22489
Apr-14 11044 2997 6064 1150 2353 23607
May-14 12120 3131 6344 1244 2600 25439
Jun-14 13459 3311 6593 1357 2653 27374
Jul-14 13048 3390 6304 1421 2600 26764
Aug-14 12275 3277 6064 1263 2549 25428
Sep-14 11347 3232 5789 1173 2453 23995
Oct-14 10667 3131 5699 1128 2517 23142
Nov-14 10459 3087 5604 974 2541 22666
Dec-14 10082 3030 5444 979 2453 21989

Q3

Anova: Single Factor
SUMMARY
Groups Count Sum Average Variance
2010 12 9916 826.3333333333 135.3333333333
2011 12 10049 837.4166666667 121.5378787879
2012 12 9431 785.9166666667 2749.7196969697
2013 12 8029 669.0833333333 959.3560606061
2014 12 5955 496.25 2940.0227272727
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 984600.333333333 4 246150.083333333 178.215438334 0.0000 2.5396886349
Within Groups 75965.6666666667 55 1381.1939393939
Total 1060566 59

Defects After Delivery

Defects After Delivery
tc={ADAA7B03-0CEE-47E5-A080-EAB2C7DB9812}: [Threaded comment] Your version of Excel allows you to read this threaded comment; however, any edits to it will get removed if the file is opened in a newer version of Excel. Learn more: https://go.microsoft.com/fwlink/?linkid=870924 Comment: We can conclude that Defects had a slight increase from 2010 to 2011 which can be attributed to an increase in unit sales. But over the years from the years of 2010 to 2014 the amount of defects decreased overall . This shows that the company is evolving and improving their manufacturing process.
Defects per million items received from suppliers
Month 2010 2011 2012 2013 2014
January 812 828 824 682 571
February 810 832 836 695 575
March 813 847 818 692 547
April 823 839 825 686 542
May 832 832 804 673 532
June 848 840 812 681 496
July 837 849 806 696 472
August 831 857 798 688 460
September 827 839 804 671 441
October 838 842 713 645 445
November 826 828 705 617 438
December 819 816 686 603 436
Total 9916 10049 9431 8029 5955
Q3
Anova: Single Factor
SUMMARY
Groups Count Sum Average Variance
2010 12 9916 826.3333333333 135.3333333333
2011 12 10049 837.4166666667 121.5378787879
2012 12 9431 785.9166666667 2749.7196969697
2013 12 8029 669.0833333333 959.3560606061
2014 12 5955 496.25 2940.0227272727
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 984600.333333333 4 246150.083333333 178.215438334 0.0000 2.5396886349
Within Groups 75965.6666666667 55 1381.1939393939
Total 1060566 59

Defects After Delivery by Year

2010 2011 2012 2013 2014 9916 10049 9431 8029 5955 2010 2011 2012 2013 2014 812 828 824 682 571 2010 2011 2012 2013 2014 810 832 836 695 575 2010 2011 2012 2013 2014 813 847 818 692 547 2010 2011 2012 2013 2014 823 839 825 686 542 2010 2011 2012 2013 2014 832 832 804 673 532 2010 2011 2012 2013 2014 848 840 812 681 496 2010 2011 2012 2013 2014 837 849 806 696 472 2010 2011 2012 2013 2014 831 857 798 688 460 2010 2011 2012 2013 2014 827 839 804 671 441 2010 2011 2012 2013 2014 838 842 713 645 445 2010 2011 2012 2013 2014 826 828 705 617 438 2010 2011 2012 2013 2014 819 816 686 603 436

We can conclude that Defects had a slight increase from 2010 to 2011 which can be attributed to an increase in unit sales. But over the years from the years of 2010 to 2014 the amount of defects decreased overall . This shows that the company is evolving and improving their manufacturing process.

Time to Pay Suppliers

Time to Pay Suppliers
Month Working Days
Jan-10 8.32
Feb-10 8.28
Mar-10 8.29
Apr-10 8.32
May-10 8.36
Jun-10 8.35
Jul-10 8.34
Aug-10 8.32
Sep-10 8.36
Oct-10 8.33
Nov-10 8.32
Dec-10 8.29
Jan-11 7.89
Feb-11 7.65
Mar-11 7.58
Apr-11 7.53
May-11 7.48
Jun-11 7.45
Jul-11 7.36
Aug-11 7.35
Sep-11 7.32
Oct-11 7.3
Nov-11 7.27
Dec-11 7.25
Jan-12 7.22
Feb-12 7.21
Mar-12 7.22
Apr-12 7.29
May-12 7.25
Jun-12 7.23
Jul-12 7.28
Aug-12 7.25
Sep-12 7.24
Oct-12 7.26
Nov-12 7.21
Dec-12 7.23
Jan-13 7.24
Feb-13 7.19
Mar-13 7.21
Apr-13 7.23
May-13 7.22
Jun-13 7.19
Jul-13 7.17
Aug-13 7.15
Sep-13 7.16
Oct-13 7.16
Nov-13 7.15
Dec-13 7.14
Jan-14 7.12
Feb-14 7.11
Mar-14 7.11
Apr-14 7.11
May-14 7.11
Jun-14 7.12
Jul-14 7.08
Aug-14 7.09
Sep-14 7.09
Oct-14 7.04
Nov-14 7.06
Dec-14 7.08

Employee Satisfaction

Employee Satisfaction Results
Averages using a 5 point scale
Design & Sales &
Quarter Production Sample size Manager Sample size Administration Sample size Total Sample size
1st Q-11 2.86 100 3.81 10 3.51 30 3.07 140
2nd Q-11 2.91 100 3.76 10 3.38 30 3.07 140
3rd Q-11 2.84 100 3.86 10 3.45 30 3.04 140
4th Q-11 2.83 100 3.48 10 3.61 30 3.04 140
1st Q-12 2.91 100 3.75 20 3.37 30 3.11 150
2nd Q-12 2.94 100 3.92 20 3.53 30 3.19 150
3rd Q-12 2.86 100 3.89 20 3.47 30 3.12 150
4th Q-12 2.83 100 3.58 20 3.66 30 3.10 150
1st Q-13 2.95 100 3.82 20 3.71 40 3.25 160
2nd Q-13 3.01 100 4.01 20 3.53 40 3.27 160
3rd Q-13 3.03 100 3.92 20 3.62 40 3.29 160
4th Q-13 2.96 100 3.84 20 3.48 40 3.20 160
1st Q-14 3.05 100 3.92 20 3.52 40 3.28 160
2nd Q-14 3.12 100 4.00 20 3.37 40 3.29 160
3rd Q-14 3.06 100 3.93 20 3.46 40 3.27 160
4th Q-14 3.02 100 3.70 20 3.59 40 3.25 160

Engines

Engine Production Time
Sample Production Time (min)
1 65.1
2 62.3
3 60.4
4 58.7
5 58.1
6 56.9
7 57.0
8 56.5
9 55.1
10 54.3
11 53.7
12 53.2
13 52.8
14 52.5
15 52.1
16 51.8
17 51.5
18 51.3
19 50.9
20 50.5
21 50.2
22 50.0
23 49.7
24 49.5
25 49.3
26 49.4
27 49.1
28 49.0
29 48.8
30 48.5
31 48.3
32 48.2
33 48.1
34 47.9
35 47.7
36 47.6
37 47.4
38 47.1
39 46.9
40 46.8
41 46.7
42 46.6
43 46.5
44 46.5
45 46.2
46 46.3
47 46.0
48 45.8
49 45.7
50 45.6

Q4

Anova: Single Factor
SUMMARY
Groups Count Sum Average Variance
Current 30 8688 289.6 2061.1448275862
Process A 30 8565 285.5 4217.6379310345
Process B 30 8953 298.4333333333 435.3574712644
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 2621.0888888889 2 1310.5444444444 0.5855750995 0.5589648105 3.1012957567
Within Groups 194710.066666667 87 2238.046743295
Total 197331.155555556 89

Transmission Costs

Unit Tractor Transmission Costs
Q4
Current Process A Process B
$242.00 $242.00 $292.00 Anova: Single Factor
$176.00 $275.00 $321.00
$286.00 $199.00 $314.00 SUMMARY
$269.00 $219.00 $242.00 Groups Count Sum Average Variance
$327.00 $273.00 $278.00 Current 30 8688 289.6 2061.1448275862
$264.00 $265.00 $300.00 Process A 30 8565 285.5 4217.6379310345
$296.00 $435.00 $301.00 Process B 30 8953 298.4333333333 435.3574712644
$333.00 $285.00 $286.00
$242.00 $384.00 $315.00
$288.00 $387.00 $300.00 ANOVA
$314.00 $299.00 $304.00 Source of Variation SS df MS F P-value F crit
$302.00 $145.00 $300.00 Between Groups 2621.0888888889 2 1310.5444444444 0.5855750995 0.5589648105 3.1012957567
$335.00 $266.00 $351.00 Within Groups 194710.066666667 87 2238.046743295
$242.00 $216.00 $277.00
$281.00 $331.00 $284.00 Total 197331.155555556 89
$289.00 $247.00 $276.00
$259.00 $280.00 $312.00
$322.00 $267.00 $273.00
$209.00 $210.00 $281.00
$282.00 $391.00 $303.00
$304.00 $297.00 $306.00
$391.00 $346.00 $312.00
$236.00 $230.00 $287.00
$383.00 $332.00 $306.00
$299.00 $301.00 $312.00
$300.00 $277.00 $295.00
$278.00 $336.00 $288.00
$303.00 $217.00 $313.00
$315.00 $274.00 $286.00
$321.00 $339.00 $338.00

Blade Weight

Blade Weight
Sample Weight
1 4.88 Question 4( Average blade weight)
2 4.92 we use the average function in Excel
3 5.02 average blade weight 4.9908
4 4.97
5 5.00 for variability, we use the sample standard deviation
6 4.99 s.d. 0.10928756
7 4.86
8 5.07
9 5.04 QUESTION 5 (probability blade weights will exceed 5.20)
10 4.87 we calculate the z-score associated with 5.20
11 4.77 z 1.9142160368
12 5.14 probability (Z. Z>1.914216) 0.027796
13 5.04
14 5.00
15 4.88 QUESTION 6 (probability blade weights will be less than 4.80)
16 4.91
17 5.09 we calculate the z-score associated with 4.80
18 4.97 z -1.7458528672
19 4.98 probability (Z<-1.74585) 0.0404182609
20 5.07
21 5.03 QUESTION 7 (actual pecentage less than 4.80 or greater than 5.20)
22 5.12
23 5.08 less than 4.80 8
24 4.86 more than 5.20 7
25 5.11 total 15
26 4.92
27 5.18 actaul percentage <4.80 or > 5.20 4.2857%
28 4.93
29 5.12
30 5.08 QUESTION 8 (is the process stable over time)
31 4.75 we can make a scatter plot to investigate the stability of the process
32 4.99
33 5.00
34 4.91
35 5.18
36 4.95
37 4.63
38 4.89
39 5.11
40 5.05
41 5.03
42 5.02
43 4.96
44 5.04
45 4.93
46 5.06
47 5.07
48 5.00
49 5.03
50 5.00
51 4.95 from the scatter plot, we can observe that the process is quite stable because most values are close to each other
52 4.99
53 5.02
54 4.90 Question 9 (are there any outliers)
55 5.10 5.87
56 5.01 yes, there are possible outliers. For example,the 171st blade with a weight of 5.87 is an outlier because it is far from the other values.
57 4.84
58 5.01
59 4.88 QUESTION 10 (Is the distribution normal)
60 4.97 beloe mean 180
61 4.97 above mean 170
62 5.06
63 5.06 since the number of values below the mean is close to the number of values above the mean, the distribution is pretty normal
64 5.04
65 4.87
66 5.00
67 5.03
68 5.02
69 5.02
70 5.06
71 5.21
72 5.09
73 4.97
74 5.01
75 4.90
76 4.89
77 4.93
78 5.16
79 5.02
80 5.01
81 5.10
82 5.03
83 5.07
84 4.92
85 5.08
86 4.96
87 4.74
88 4.91
89 5.12
90 5.00
91 4.93
92 4.88
93 4.88
94 4.81
95 5.16
96 5.03
97 4.87
98 5.09
99 4.94
100 5.08
101 4.97
102 5.23
103 5.12
104 5.09
105 5.12
106 4.93
107 4.79
108 5.10
109 5.12
110 4.86
111 5.00
112 4.94
113 4.95
114 4.95
115 4.87
116 5.09
117 4.94
118 5.01
119 5.04
120 5.05
121 5.05
122 4.97
123 4.96
124 4.96
125 4.99
126 5.04
127 4.91
128 5.19
129 5.03
130 4.99
131 5.12
132 4.97
133 4.88
134 5.07
135 5.01
136 4.89
137 4.95
138 5.09
139 5.09
140 4.89
141 4.93
142 4.85
143 5.03
144 4.92
145 5.09
146 4.99
147 4.92
148 4.87
149 4.90
150 5.02
151 5.21
152 5.02
153 4.9
154 5
155 5.16
156 5.03
157 4.96
158 5.04
159 4.98
160 5.07
161 5.02
162 5.08
163 4.85
164 4.9
165 4.97
166 5.09
167 4.89
168 4.87
169 5.01
170 4.97
171 5.87
172 5.33
173 5.11
174 5.07
175 4.93
176 4.99
177 5.04
178 5.14
179 5.09
180 5.06
181 4.85
182 4.93
183 5.04
184 5.09
185 5.07
186 4.99
187 5.01
188 4.88
189 4.93
190 5.1
191 4.94
192 4.88
193 4.89
194 4.89
195 4.85
196 4.82
197 5.02
198 4.9
199 4.73
200 5.04
201 5.07
202 4.81
203 5.04
204 5.03
205 5.01
206 5.14
207 5.12
208 4.89
209 4.91
210 4.97
211 4.98
212 5.01
213 5.01
214 5.09
215 4.93
216 5.04
217 5.11
218 5.07
219 4.95
220 4.86
221 5.13
222 4.95
223 5.22
224 4.81
225 4.91
226 4.95
227 4.94
228 4.81
229 5.11
230 4.81
231 4.97
232 5.07
233 5.03
234 4.81
235 4.95
236 4.89
237 5.08
238 4.93
239 4.99
240 4.94
241 5.13
242 5.02
243 5.07
244 4.82
245 5.03
246 4.85
247 4.89
248 4.82
249 5.18
250 5.02
251 5.05
252 4.88
253 5.08
254 4.98
255 5.02
256 4.99
257 5.02
258 5.03
259 5.02
260 5.07
261 4.95
262 4.95
263 4.94
264 5.12
265 5.08
266 4.91
267 4.96
268 4.96
269 4.94
270 5.19
271 4.91
272 5.01
273 4.93
274 5.05
275 4.96
276 4.92
277 4.95
278 5.08
279 4.97
280 5.04
281 4.94
282 4.98
283 5.03
284 5.05
285 4.91
286 5.09
287 5.21
288 4.87
289 5.02
290 4.81
291 4.96
292 5.06
293 4.86
294 4.96
295 4.99
296 4.94
297 5.06
298 4.95
299 5.02
300 5.01
301 5.04
302 5.01
303 5.02
304 5.03
305 5.18
306 5.08
307 5.14
308 4.92
309 4.97
310 4.92
311 5.14
312 4.92
313 5.03
314 4.98
315 4.76
316 4.94
317 4.92
318 4.91
319 4.96
320 5.02
321 5.13
322 5.13
323 4.92
324 4.98
325 4.89
326 4.88
327 5.11
328 5.11
329 5.08
330 5.03
331 4.94
332 4.88
333 4.91
334 4.86
335 4.89
336 4.91
337 4.87
338 4.93
339 5.14
340 4.87
341 4.98
342 4.88
343 4.88
344 5.01
345 4.93
346 4.93
347 4.99
348 4.91
349 4.96
350 4.78

Blade Weights

Weight 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 15 9 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 4.88 4.92 5.0199999999999996 4.97 5 4.99 4.8600000000000003 5.07 5.04 4.87 4.7699999999999996 5.14 5.04 5 4.88 4.91 5.09 4.97 4.9800000000000004 5.07 5.03 5.12 5.08 4.8600000000000003 5.1100000000000003 4.92 5.18 4.93 5.12 5.08 4.75 4.99 5 4.91 5.18 4.95 4.63 4.8899999999999997 5.1100000000000003 5.05 5.03 5.0199999999999996 4.96 5.04 4.93 5.0599999999999996 5.07 5 5.03 5 4.95 4.99 5.0199999999999996 4.9000000000000004 5.0999999999999996 5.01 4.84 5.01 4.88 4.97 4.97 5.0599999999999996 5.0599999999999996 5.04 4.87 5 5.03 5.0199999999999996 5.0199999999999996 5.0599999999999996 5.21 5.09 4.97 5.01 4.9000000000000004 4.8899999999999997 4.93 5.16 5.0199999999999996 5.01 5.0999999999999996 5.03 5.07 4.92 5.08 4.96 4.74 4.91 5.12 5 4.93 4.88 4.88 4.8099999999999996 5.16 5.03 4.87 5.09 4.9400000000000004 5.08 4.97 5.23 5.12 5.09 5.12 4.93 4.79 5.0999999999999996 5.12 4.8600000000000003 5 4.9400000000000004 4.95 4.95 4.87 5.09 4.9400000000000004 5.01 5.04 5.05 5.05 4.97 4.96 4.96 4.99 5.04 4.91 5.19 5.03 4.99 5.12 4.97 4.88 5.07 5.01 4.8899999999999997 4.95 5.09 5.09 4.8899999999999997 4.93 4.8499999999999996 5.03 4.92 5.09 4.99 4.92 4.87 4.9000000000000004 5.0199999999999996 5.21 5.0199999999999996 4.9000000000000004 5 5.16 5.03 4.96 5.04 4.9800000000000004 5.07 5.0199999999999996 5.08 4.8499999999999996 4.9000000000000004 4.97 5.09 4.8899999999999997 4.87 5.01 4.97 5.87 5.33 5.1100000000000003 5.07 4.93 4.99 5.04 5.14 5.09 5.0599999999999996 4.8499999999999996 4.93 5.04 5.09 5.07 4.99 5.01 4.88 4.93 5.0999999999999996 4.9400000000000004 4.88 4.8899999999999997 4.8899999999999997 4.8499999999999996 4.82 5.0199999999999996 4.9000000000000004 4.7300 000000000004 5.04 5.07 4.8099999999999996 5.04 5.03 5.01 5.14 5.12 4.8899999999999997 4.91 4.97 4.9800000000000004 5.01 5.01 5.09 4.93 5.04 5.1100000000000003 5.07 4.95 4.8600000000000003 5.13 4.95 5.22 4.8099999999999996 4.91 4.95 4.9400000000000004 4.8099999999999996 5.1100000000000003 4.8099999999999996 4.97 5.07 5.03 4.8099999999999996 4.95 4.8899999999999997 5.08 4.93 4.99 4.9400000000000004 5.13 5.0199999999999996 5.07 4.82 5.03 4.8499999999999996 4.8899999999999997 4.82 5.18 5.0199999999999996 5.05 4.88 5.08 4.9800000000000004 5.0199999999999996 4.99 5.0199999999999996 5.03 5.0199999999999996 5.07 4.95 4.95 4.9400000000000004 5.12 5.08 4.91 4.96 4.96 4.9400000000000004 5.19 4.91 5.01 4.93 5.05 4.96 4.92 4.95 5.08 4.97 5.04 4.9400000000000004 4.9800000000000004 5.03 5.05 4.91 5.09 5.21 4.87 5.0199999999999996 4.8099999999999996 4.96 5.0599999999999996 4.8600000000000003 4.96 4.99 4.94000 00000000004 5.0599999999999996 4.95 5.0199999999999996 5.01 5.04 5.01 5.0199999999999996 5.03 5.18 5.08 5.14 4.92 4.97 4.92 5.14 4.92 5.03 4.9800000000000004 4.76 4.9400000000000004 4.92 4.91 4.96 5.0199999999999996 5.13 5.13 4.92 4.9800000000000004 4.8899999999999997 4.88 5.1100000000000003 5.1100000000000003 5.08 5.03 4.9400000000000004 4.88 4.91 4.8600000000000003 4.8899999999999997 4.91 4.87 4.93 5.14 4.87 4.9800000000000004 4.88 4.88 5.01 4.93 4.93 4.99 4.91 4.96 4.78

sample

weight

Mower Test

Mower Test Functional Performance
Sample
Observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
2 Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass
3 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass
4 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
5 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
6 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
7 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
8 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass
9 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
10 Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
11 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
12 Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
13 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail
14 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
15 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
16 Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
17 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
18 Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
19 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
20 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
21 Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass
22 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
23 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
24 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
25 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
26 Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
27 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
28 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
29 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
30 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
31 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
32 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
33 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
34 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
35 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
36 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
37 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
38 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
39 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
40 Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
41 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
42 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
43 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
44 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
45 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
46 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
47 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
48 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
49 Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
50 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
51 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
52 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
53 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
54 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
55 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass
56 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
57 Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
58 Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
59 Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
60 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
61 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
62 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
63 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail
64 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
65 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
66 Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
67 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
68 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
69 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
70 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass
71 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
72 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
73 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
74 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
75 Pass Pass Fail Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass
76 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
77 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
78 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
79 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
80 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
81 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
82 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
83 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
84 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
85 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
86 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass
87 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
88 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass
89 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
90 Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
91 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
92 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
93 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
94 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
95 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
96 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
97 Pass Pass Pass Pass Pass Fail Pass Pass Pass Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
98 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
99 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
100 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Fail Pass Pass
question 1
bernoulli distribution
question 2 (fraction of mowers that fail)
number of mowers that fail 54
total number of mowers 3000
fraction of mowers that fail 0.018
QUESTION 3 (Probability of having x failures)
Let x be the number of failures and P(X=x) be the associated probability per failure x is from 0 to 20
x P(X=x)
0 0.1626105724
1 0.2980641858
2 0.2704431665
3 0.1619354195
4 0.0719804589
5 0.0253324303
6 0.0073520801
7 0.001809677
8 0.000385616
9 0.0000722539
10 0.0000120521
11 0.0000018075
12 0.0000002457
13 0.0000000305
14 0.0000000035
15 0.0000000004
16 0
17 0
18 0
19 0
20 0
for blade weight questions, check the blade weight tab

Employee Retention

Employee Retention
Gender Differences Locality Status
YearsPLE YrsEducation College GPA Age Gender College Grad Local t-Test: Two-Sample Assuming Equal Variances t-Test: Two-Sample Assuming Equal Variances
10 18 3.01 33 F Y Y
10 16 2.78 25 M Y Y Female Male Local
10 18 3.15 26 M Y N Mean 5.5307692308 5.5407407407 Mean 7.2227272727
10 18 3.86 24 F Y Y Variance 12.2506410256 6.4494301994 Variance 3.7027922078
9.6 16 2.58 25 F Y Y Observations 13 27 Observations 22
8.5 16 2.96 23 M Y Y Pooled Variance 8.281391513 Pooled Variance 4.5625386617
8.4 17 3.56 35 M Y Y Hypothesized Mean Difference 0 Hypothesized Mean Difference 0
8.4 16 2.64 23 M Y Y df 38 df 37
8.2 18 3.43 32 F Y Y t Stat -0.0102643826 t Stat 5.2094943403
7.9 15 2.75 34 M N Y P(T<=t) one-tail 0.4959320257 P(T<=t) one-tail 0.0000036859
7.6 13 2.95 28 M N Y t Critical one-tail 1.6859544602 t Critical one-tail 1.6870936196
7.5 13 2.50 23 M N Y P(T<=t) two-tail 0.9918640514 P(T<=t) two-tail 0.0000073717
7.5 16 2.86 24 M Y Y t Critical two-tail 2.0243941639 t Critical two-tail 2.026192463
7.2 15 2.38 23 F N Y
6.8 16 3.47 27 F Y Y
6.5 16 3.10 26 M Y Y
6.3 13 2.98 21 M N Y College Graduation
6.2 16 2.71 23 M Y N
5.9 13 2.95 20 F N Y t-Test: Two-Sample Assuming Equal Variances
5.8 18 3.36 25 M Y Y
5.4 16 2.75 24 M Y N Non-College Grad College Grad
5.1 17 2.48 32 M Y N Mean 4.8923076923 5.8481481481
4.8 14 2.76 28 M N Y Variance 5.8191025641 9.1095156695
4.7 16 3.12 25 F Y N Observations 13 27
4.5 13 2.96 23 M N Y Pooled Variance 8.0704378468
4.3 16 2.80 25 M Y N Hypothesized Mean Difference 0
4 17 3.57 24 M Y Y df 38
3.9 16 3.00 26 F Y N t Stat -0.9966907369
3.7 16 2.86 23 M Y N P(T<=t) one-tail 0.162609673
3.7 15 3.19 24 M N N t Critical one-tail 1.6859544602
3.7 16 3.50 23 F Y N P(T<=t) two-tail 0.325219346
3.5 14 2.84 21 M N Y t Critical two-tail 2.0243941639
3.4 16 3.13 24 M Y N
2.5 13 1.75 22 M N N
1.8 16 2.98 25 M Y N
1.5 15 2.13 22 M N N
0.9 16 2.79 23 F Y Y
0.8 18 3.15 26 M Y N
0.7 13 1.84 22 F N N
0.3 18 3.79 24 F Y N

5a-Gender

Female Male
10 10 t-Test: Two-Sample Assuming Equal Variances
10 10
9.6 8.5 Female Male
8.2 8.4 Mean 5.5307692308 5.5407407407
7.2 8.4 Variance 12.2506410256 6.4494301994
6.8 7.9 Observations 13 27
5.9 7.6 Pooled Variance 8.281391513
4.7 7.5 Hypothesized Mean Difference 0
3.9 7.5 df 38
3.7 6.5 t Stat -0.0102643826
0.9 6.3 P(T<=t) one-tail 0.4959320257
0.7 6.2 t Critical one-tail 1.6859544602
0.3 5.8 P(T<=t) two-tail 0.9918640514
5.4 t Critical two-tail 2.0243941639
5.1
4.8
4.5
4.3
4
3.7
3.7
3.5
3.4
2.5
1.8
1.5
0.8

5b-Col

Non-College Grad College Grad t-Test: Two-Sample Assuming Equal Variances
7.9 10
7.6 10 Non-College Grad College Grad
7.5 10 Mean 4.8923076923 5.8481481481
7.2 10 Variance 5.8191025641 9.1095156695
6.3 9.6 Observations 13 27
5.9 8.5 Pooled Variance 8.0704378468
4.8 8.4 Hypothesized Mean Difference 0
4.5 8.4 df 38
3.7 8.2 t Stat -0.9966907369
3.5 7.5 P(T<=t) one-tail 0.162609673
2.5 6.8 t Critical one-tail 1.6859544602
1.5 6.5 P(T<=t) two-tail 0.325219346
0.7 6.2 t Critical two-tail 2.0243941639
5.8
5.4
5.1
4.7
4.3
4
3.9
3.7
3.7
3.4
1.8
0.9
0.8
0.3

5c-Local

Local Non- Local t-Test: Two-Sample Assuming Equal Variances
10 10
10 6.2 Local Non- Local
10 5.4 Mean 7.2227272727 3.6294117647
9.6 5.1 Variance 3.7027922078 5.6909558824
8.5 4.7 Observations 22 17
8.4 4.3 Pooled Variance 4.5625386617
8.4 3.9 Hypothesized Mean Difference 0
8.2 3.7 df 37
7.9 3.7 t Stat 5.2094943403
7.6 3.7 P(T<=t) one-tail 0.0000036859
7.5 3.4 t Critical one-tail 1.6870936196
7.5 2.5 P(T<=t) two-tail 0.0000073717
7.2 1.8 t Critical two-tail 2.026192463
6.8 1.5
6.5 0.8
6.3 0.7
5.9 0.3
5.8
4.8
4.5
4
3.5
0.9

Purchasing Survey

Purchasing Survey
Delivery speed Price level Price flexibility Manufacturing image Overall service Salesforce image Product quality Usage Level Satisfaction Level Size of firm Purchasing Structure Industry Buying Type
4.1 0.6 6.9 4.7 2.4 2.3 5.2 32 4.2 0 0 1 1
1.8 3 6.3 6.6 2.5 4 8.4 43 4.3 1 1 0 1
3.4 5.2 5.7 6 4.3 2.7 8.2 48 5.2 1 1 1 2
2.7 1 7.1 5.9 1.8 2.3 7.8 32 3.9 1 1 1 1
6 0.9 9.6 7.8 3.4 4.6 4.5 58 6.8 0 0 1 3
1.9 3.3 7.9 4.8 2.6 1.9 9.7 45 4.4 1 1 1 2
4.6 2.4 9.5 6.6 3.5 4.5 7.6 46 5.8 0 0 1 1
1.3 4.2 6.2 5.1 2.8 2.2 6.9 44 4.3 1 1 0 2
5.5 1.6 9.4 4.7 3.5 3 7.6 63 5.4 0 0 1 3
4 3.5 6.5 6 3.7 3.2 8.7 54 5.4 1 1 0 2
2.4 1.6 8.8 4.8 2 2.8 5.8 32 4.3 0 0 0 1
3.9 2.2 9.1 4.6 3 2.5 8.3 47 5 0 0 1 2
2.8 1.4 8.1 3.8 2.1 1.4 6.6 39 4.4 1 1 0 1
3.7 1.5 8.6 5.7 2.7 3.7 6.7 38 5 0 0 1 1
4.7 1.3 9.9 6.7 3 2.6 6.8 54 5.9 0 0 0 3
3.4 2 9.7 4.7 2.7 1.7 4.8 49 4.7 0 0 0 3
3.2 4.1 5.7 5.1 3.6 2.9 6.2 38 4.4 0 1 1 2
4.9 1.8 7.7 4.3 3.4 1.5 5.9 40 5.6 0 0 0 2
5.3 1.4 9.7 6.1 3.3 3.9 6.8 54 5.9 0 0 1 3
4.7 1.3 9.9 6.7 3 2.6 6.8 55 6 0 0 0 3
3.3 0.9 8.6 4 2.1 1.8 6.3 41 4.5 0 0 0 2
3.4 0.4 8.3 2.5 1.2 1.7 5.2 35 3.3 0 0 0 1
3 4 9.1 7.1 3.5 3.4 8.4 55 5.2 0 1 0 3
2.4 1.5 6.7 4.8 1.9 2.5 7.2 36 3.7 1 1 0 1
5.1 1.4 8.7 4.8 3.3 2.6 3.8 49 4.9 0 0 0 2
4.6 2.1 7.9 5.8 3.4 2.8 4.7 49 5.9 0 0 1 3
2.4 1.5 6.6 4.8 1.9 2.5 7.2 36 3.7 1 1 0 1
5.2 1.3 9.7 6.1 3.2 3.9 6.7 54 5.8 0 0 1 3
3.5 2.8 9.9 3.5 3.1 1.7 5.4 49 5.4 0 0 1 3
4.1 3.7 5.9 5.5 3.9 3 8.4 46 5.1 1 1 0 2
3 3.2 6 5.3 3.1 3 8 43 3.3 1 1 0 1
2.8 3.8 8.9 6.9 3.3 3.2 8.2 53 5 0 1 0 3
5.2 2 9.3 5.9 3.7 2.4 4.6 60 6.1 0 0 0 3
3.4 3.7 6.4 5.7 3.5 3.4 8.4 47 3.8 1 1 0 1
2.4 1 7.7 3.4 1.7 1.1 6.2 35 4.1 1 1 0 1
1.8 3.3 7.5 4.5 2.5 2.4 7.6 39 3.6 1 1 1 1
3.6 4 5.8 5.8 3.7 2.5 9.3 44 4.8 1 1 1 2
4 0.9 9.1 5.4 2.4 2.6 7.3 46 5.1 0 0 1 3
0 2.1 6.9 5.4 1.1 2.6 8.9 29 3.9 1 1 1 1
2.4 2 6.4 4.5 2.1 2.2 8.8 28 3.3 1 1 1 1
1.9 3.4 7.6 4.6 2.6 2.5 7.7 40 3.7 1 1 1 1
5.9 0.9 9.6 7.8 3.4 4.6 4.5 58 6.7 0 0 1 3
4.9 2.3 9.3 4.5 3.6 1.3 6.2 53 5.9 0 0 0 3
5 1.3 8.6 4.7 3.1 2.5 3.7 48 4.8 0 0 0 2
2 2.6 6.5 3.7 2.4 1.7 8.5 38 3.2 1 1 1 1
5 2.5 9.4 4.6 3.7 1.4 6.3 54 6 0 0 0 3
3.1 1.9 10 4.5 2.6 3.2 3.8 55 4.9 0 0 1 3
3.4 3.9 5.6 5.6 3.6 2.3 9.1 43 4.7 1 1 1 2
5.8 0.2 8.8 4.5 3 2.4 6.7 57 4.9 0 0 1 3
5.4 2.1 8 3 3.8 1.4 5.2 53 3.8 0 0 1 3
3.7 0.7 8.2 6 2.1 2.5 5.2 41 5 0 0 0 2
2.6 4.8 8.2 5 3.6 2.5 9 53 5.2 1 1 1 2
4.5 4.1 6.3 5.9 4.3 3.4 8.8 50 5.5 1 1 0 2
2.8 2.4 6.7 4.9 2.5 2.6 9.2 32 3.7 1 1 1 1
3.8 0.8 8.7 2.9 1.6 2.1 5.6 39 3.7 0 0 0 1
2.9 2.6 7.7 7 2.8 3.6 7.7 47 4.2 0 1 1 2
4.9 4.4 7.4 6.9 4.6 4 9.6 62 6.2 1 1 0 2
5.4 2.5 9.6 5.5 4 3 7.7 65 6 0 0 0 3
4.3 1.8 7.6 5.4 3.1 2.5 4.4 46 5.6 0 0 1 3
2.3 4.5 8 4.7 3.3 2.2 8.7 50 5 1 1 1 2
3.1 1.9 9.9 4.5 2.6 3.1 3.8 54 4.8 0 0 1 3
5.1 1.9 9.2 5.8 3.6 2.3 4.5 60 6.1 0 0 0 3
4.1 1.1 9.3 5.5 2.5 2.7 7.4 47 5.3 0 0 1 3
3 3.8 5.5 4.9 3.4 2.6 6 36 4.2 0 1 1 2
1.1 2 7.2 4.7 1.6 3.2 10 40 3.4 1 1 1 1
3.7 1.4 9 4.5 2.6 2.3 6.8 45 4.9 0 0 0 2
4.2 2.5 9.2 6.2 3.3 3.9 7.3 59 6 0 0 0 3
1.6 4.5 6.4 5.3 3 2.5 7.1 46 4.5 1 1 0 2
5.3 1.7 8.5 3.7 3.5 1.9 4.8 58 4.3 0 0 0 3
2.3 3.7 8.3 5.2 3 2.3 9.1 49 4.8 1 1 1 2
3.6 5.4 5.9 6.2 4.5 2.9 8.4 50 5.4 1 1 1 2
5.6 2.2 8.2 3.1 4 1.6 5.3 55 3.9 0 0 1 3
3.6 2.2 9.9 4.8 2.9 1.9 4.9 51 4.9 0 0 0 3
5.2 1.3 9.1 4.5 3.3 2.7 7.3 60 5.1 0 0 1 3
3 2 6.6 6.6 2.4 2.7 8.2 41 4.1 1 1 0 1
4.2 2.4 9.4 4.9 3.2 2.7 8.5 49 5.2 0 0 1 2
3.8 0.8 8.3 6.1 2.2 2.6 5.3 42 5.1 0 0 0 2
3.3 2.6 9.7 3.3 2.9 1.5 5.2 47 5.1 0 0 1 3
1 1.9 7.1 4.5 1.5 3.1 9.9 39 3.3 1 1 1 1
4.5 1.6 8.7 4.6 3.1 2.1 6.8 56 5.1 0 0 0 3
5.5 1.8 8.7 3.8 3.6 2.1 4.9 59 4.5 0 0 0 3
3.4 4.6 5.5 8.2 4 4.4 6.3 47 5.6 0 1 1 2
1.6 2.8 6.1 6.4 2.3 3.8 8.2 41 4.1 1 1 0 1
2.3 3.7 7.6 5 3 2.5 7.4 37 4.4 0 1 0 1
2.6 3 8.5 6 2.8 2.8 6.8 53 5.6 1 1 0 2
2.5 3.1 7 4.2 2.8 2.2 9 43 3.7 1 1 1 1
2.4 2.9 8.4 5.9 2.7 2.7 6.7 51 5.5 1 1 0 2
2.1 3.5 7.4 4.8 2.8 2.3 7.2 36 4.3 0 1 0 1
2.9 1.2 7.3 6.1 2 2.5 8 34 4 1 1 1 1
4.3 2.5 9.3 6.3 3.4 4 7.4 60 6.1 0 0 0 3
3 2.8 7.8 7.1 3 3.8 7.9 49 4.4 0 1 1 2
4.8 1.7 7.6 4.2 3.3 1.4 5.8 39 5.5 0 0 0 2
3.1 4.2 5.1 7.8 3.6 4 5.9 43 5.2 0 1 1 2
1.9 2.7 5 4.9 2.2 2.5 8.2 36 3.6 1 1 0 1
4 0.5 6.7 4.5 2.2 2.1 5 31 4 0 0 1 1
0.6 1.6 6.4 5 0.7 2.1 8.4 25 3.4 1 1 1 1
6.1 0.5 9.2 4.8 3.3 2.8 7.1 60 5.2 0 0 1 3
2 2.8 5.2 5 2.4 2.7 8.4 38 3.7 1 1 0 1
3.1 2.2 6.7 6.8 2.6 2.9 8.4 42 4.3 1 1 0 1
2.5 1.8 9 5 2.2 3 6 33 4.4 0 0 0 1

Order Solution Now

Similar Posts